题目内容

如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.
考点:平面与平面垂直的判定
专题:空间位置关系与距离
分析:(Ⅰ)利用三角形中位线定理推导出BC∥面EFA,从而得到BC∥l,再由已知条件推导出BC⊥面PAC,由此证明l⊥面PAC.
(2)以C为坐标原点,CA为x轴,CB为y轴,过C垂直于面ABC的直线为z轴,建立空间直角坐标系,利用向量法求出直线l上存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余,|AQ|=1.
解答: (Ⅰ)证明:∵E,F分别是PB,PC的中点,∴BC∥EF,
又EF?平面EFA,BC不包含于平面EFA,
∴BC∥面EFA,
又BC?面ABC,面EFA∩面ABC=l,
∴BC∥l,
又BC⊥AC,面PAC∩面ABC=AC,
面PAC⊥面ABC,∴BC⊥面PAC,
∴l⊥面PAC.
(2)解:以C为坐标原点,CA为x轴,CB为y轴,
过C垂直于面ABC的直线为z轴,建立空间直角坐标系,
A(2,0,0),B(0,4,0),P(1,0,
3
),
E(
1
2
,0,
3
2
),F(
1
2
,2,
3
2
),
AE
=(-
3
2
,0,
3
2
)
EF
=(0,2,0)

设Q(2,y,0),面AEF的法向量为
m
=(x,y,z)

AE
m
=-
3
2
x+
3
2
z=0
EF
m
=2y=0

取z=
3
,得
m
=(1,0,
3
)
PQ
=(1,y,-
3
)

|cos<
PQ
EF
>|=|
2y
2
4+y2
|
=
|y|
4+y2

|cos<
PQ
m
>|=|
1-3
2
4+y2
|
=
1
4+y2

依题意,得|cos<
PQ
EF
>|=|cos<
PQ
m
>|,
∴y=±1.
∴直线l上存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余,|AQ|=1.
点评:本题考查直线与平面垂直的证明,考查满足条件的点是否存在的判断与求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网