题目内容
(1)EF∥平面PBC;
(2)平面DEF⊥平面PAC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)利用三角形中位线定理推导出EF∥PC,由此能证明EF∥平面PBC.
(2)由已知条件推导出△ACD为正三角形,DF⊥AC,从而得到DF⊥平面PAC,由此能证明平面DEF⊥平面PAC.
(2)由已知条件推导出△ACD为正三角形,DF⊥AC,从而得到DF⊥平面PAC,由此能证明平面DEF⊥平面PAC.
解答:
证明:(1)在△PAC中,因为E,F分别是AP,AC的中点,
所以EF∥PC.…(2分)
又因为EF?平面PBC,PC?平面PBC,
所以EF∥平面PBC.…(5分)
(2)连结CD.因为∠BAC=60°,AD=AC,
所以△ACD为正三角形.
因为F是AC的中点,所以DF⊥AC.…(7分)
因为平面PAC⊥平面ABC,DF?平面ABC,
平面PAC∩平面ABC=AC,
所以DF⊥平面PAC. …(11分)
因为DF?平面DEF,
所以平面DEF⊥平面PAC.…(14分)
所以EF∥PC.…(2分)
又因为EF?平面PBC,PC?平面PBC,
所以EF∥平面PBC.…(5分)
(2)连结CD.因为∠BAC=60°,AD=AC,
所以△ACD为正三角形.
因为F是AC的中点,所以DF⊥AC.…(7分)
因为平面PAC⊥平面ABC,DF?平面ABC,
平面PAC∩平面ABC=AC,
所以DF⊥平面PAC. …(11分)
因为DF?平面DEF,
所以平面DEF⊥平面PAC.…(14分)
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目