题目内容
17.| A. | 571 | B. | 574 | C. | 577 | D. | 580 |
分析 设各行的首项组成数列{an},根据数列项的特点推导出第20行的第一个数,然后加9即可得到第20行从左至右的第2个数.
解答 解:设各行的首项组成数列{an},
则a2-a1=3,a3-a2=6,…,an-an-1=3(n-1)
叠加可得:an-a1=3+6+…+3(n-1)=$\frac{3n(n-1)}{2}$,
∴an=$\frac{3n(n-1)}{2}$+1,
∴a20=$\frac{3×20×19}{2}$=571
∴数阵中第20行从左至右的第2个数是571+3=574,
故选:B.
点评 本题主要考查归纳推理的应用,利用数列项的特点,利用累加法求出每一行第一个数的规律是解决本题的关键.
练习册系列答案
相关题目
7.如图是求样本x1,x2,…,x10平均数$\overline x$的程序框图,图中空白框中应填入的内容为( )

| A. | S=S+xn | B. | $S=S+\frac{x_n}{n}$ | C. | S=S+n | D. | $S=S+\frac{x_n}{10}$ |
8.sin60°cos15°-cos300°sin165°的值为( )
| A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{1}{2}$ |
12.若双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)实轴的两个端点和抛物线x2=-4by的焦点连成一个等边三角形,则此双曲线的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
2.
如图,为测一棵树的高度,在与树在同一铅垂平面的地面上选取A,B两点,从A,B两点测得树尖的仰角分别为30°和75°,且A,B两点间的距离为60$\sqrt{2}$米,则树的高度CD为( )
| A. | $(30+15\sqrt{3})$米 | B. | $(15+30\sqrt{3})$米 | C. | $15(\sqrt{6}-\sqrt{2})$米 | D. | $15(\sqrt{6}+\sqrt{2})$米 |
9.已知复数z=$\frac{1}{1-i}$,则$\overline{z}$•i在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |