题目内容
若复数z满足
|=0,则z的值为 .
|
考点:二阶行列式的定义,复数代数形式的乘除运算
专题:矩阵和变换
分析:由已知得z2+4=0,由此能求出z=±2i..
解答:
解:∵
=0,
∴z2+4=0,
解得z=±2i.
故答案为:±2i.
|
∴z2+4=0,
解得z=±2i.
故答案为:±2i.
点评:本题考查复数的求法,是基础题,解题时要注意二阶行列式性质的合理运用.
练习册系列答案
相关题目
已知集合A={x|x+1<0或x>4},B={x|
<0},则A∩B=( )
| x-2 |
| x+2 |
| A、{x|-2<x<-1} |
| B、{x|x<2或x>4} |
| C、{x|-1<x<2} |
| D、{x|2<x<4} |
若m是5和
的等比中项,则圆锥曲线
+y2=1的离心率是( )
| 16 |
| 5 |
| x2 |
| m |
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、
|