ÌâÄ¿ÄÚÈÝ
9£®£¨1£©µ±PÔÚÔ²ÉÏÔ˶¯Ê±£¬ÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÈôµãQ£¨1£¬1£©Ç¡ÎªÖ±ÏßlÓëÇúÏßCÏཻÏÒµÄÖе㣬ÊÔÈ·¶¨Ö±ÏßlµÄ·½³Ì£»
£¨3£©Ö±Ïß$x+y-\sqrt{3}=0$ÓëÇúÏßCÏཻÓÚE¡¢GÁ½µã£¬F¡¢HΪÇúÏßCÉÏÁ½µã£¬ÈôËıßÐÎEFGH¶Ô½ÇÏßÏ໥´¹Ö±£¬ÇóSEFGHµÄ×î´óÖµ£®
·ÖÎö £¨1£©ÉèMµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉÒÑÖªµÃµãPµÄ×ø±êÊÇ£¨x£¬$\sqrt{2}$y£©£¬ÓÉ´ËÄÜÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©Ö±ÏßlÓëÇúÏßCÏཻÏÒΪABA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬´úÈëÁ½Ê½Ïà¼õ£¬ÔÙÀûÓÃÖеã×ø±ê¹«Ê½¡¢Ð±ÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨3£©Çó³ö|FH|µÄ×î´óÖµ£¬¼´¿ÉÇó³öSEFGHµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÓÉ$\overrightarrow{DP}=\sqrt{2}\overrightarrow{DM}$ÖªµãMΪÏß¶ÎPDµÄÖе㣬
ÉèµãMµÄ×ø±êÊÇ£¨x£¬y£©£¬ÔòµãPµÄ×ø±êÊÇ£¨x£¬$\sqrt{2}$y£©£¬
¡ßµãPÔÚÔ²x2+y2=6ÉÏ£¬
¡àx2+2y2=6£®¡£¨3·Ö£©
¡àÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}$=1£»
£¨2£©Ö±ÏßlÓëÇúÏßCÏཻÏÒΪAB£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
´úÈëÍÖÔ²·½³Ì£¬Á½Ê½Ïà¼õ¿ÉµÃ£º£¨x1+x2£©£¨x1-x2£©+2£¨y1+y2£©£¨y1-y2£©=0£¬
¡ßÏÒABÖеãΪ£¨1£¬1£©£¬
¡àkAB=-$\frac{1}{2}$£®
¡àÖ±ÏßlµÄ·½³ÌΪy-1=-$\frac{1}{2}$£¨x-1£©£¬½âµÃx+2y-3=0£®
£¨3£©ÉèFHµÄ·½³ÌΪy=x+b£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ3x2+4bx+2b2-6=0£¬
¡à|FH|=$\sqrt{2}•\sqrt{£¨-\frac{4b}{3}£©^{2}-4•\frac{2{b}^{2}-6}{3}}$=$\sqrt{2}$•$\sqrt{-\frac{8}{9}{b}^{2}+8}$£¬
¡àb=0£¬|FH|µÄ×î´óֵΪ4£¬
Ö±Ïß$x+y-\sqrt{3}=0$ÓëÇúÏßCÁªÁ¢£¬¿ÉµÃ$3{x}^{2}-4\sqrt{3}x=0$£¬
¡à|EG|=$\sqrt{2}•\frac{4\sqrt{3}}{3}$=$\frac{4\sqrt{6}}{3}$£¬
¡àSEFGHµÄ×î´óֵΪ$\frac{8\sqrt{6}}{3}$£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢¡°µã²î·¨¡±¡¢Öеã×ø±ê¹«Ê½¡¢Ð±ÂʼÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $y=sin£¨{\frac{x}{2}+\frac{5¦Ð}{6}}£©$ | B£® | $y=sin£¨{2x-\frac{¦Ð}{6}}£©$ | C£® | y=2sin2x-1 | D£® | $y=cos£¨{2x-\frac{¦Ð}{6}}£©$ |
| A£® | 2ln 2 | B£® | 2-ln 2 | C£® | 4-ln 2 | D£® | 4-2ln 2 |