ÌâÄ¿ÄÚÈÝ
19£®ÏÂÁк¯Êý³ÆÎªË«Çúº¯Êý£ºË«ÇúÕýÏÒ£ºshx=$\frac{{e}^{x}-{e}^{-x}}{2}$£¬Ë«ÇúÓàÏÒ£ºchx=$\frac{{e}^{x}+{e}^{-x}}{2}$£¬Ë«ÇúÕýÇУºthx=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$£®£¨1£©¶Ô±ÈÈý½Çº¯ÊýµÄÐÔÖÊ£¬ÇëÄãÕÒ³öËüÃǵÄÈý¸öÀàËÆÐÔÖÊ£»
£¨2£©ÇóË«ÇúÕýÏÒshxµÄµ¼Êý£¬²¢ÇóÔÚµãx=0´¦µÄÇÐÏß·½³Ì£®
·ÖÎö £¨1£©¶ÔÕÕË«Çúº¯ÊýµÄ¶¨ÒåºÍÈý½Çº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉµÃµ½Èý¸öÀàËÆÐÔÖÊ£»
£¨2£©Çó³öË«ÇúÕýÏҵĵ¼Êý£¬¿ÉµÃÇÐÏßµÄбÂʺÍÇе㣬Óɵãбʽ·½³Ì¿ÉµÃÇÐÏߵķ½³Ì£®
½â´ð ½â£º£¨1£©ÓÉË«ÇúÕýÏÒ£ºshx=$\frac{{e}^{x}-{e}^{-x}}{2}$£¬Ë«ÇúÓàÏÒ£ºchx=$\frac{{e}^{x}+{e}^{-x}}{2}$£¬Ë«ÇúÕýÇУºthx=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$£®
¿ÉµÃthx=$\frac{shx}{chx}$£¬ch2x-sh2x=1£¬sh2x=2shx•chx£»
£¨2£©£¨shx£©¡ä=£¨$\frac{{e}^{x}-{e}^{-x}}{2}$£©¡ä=$\frac{{e}^{x}+{e}^{-x}}{2}$£¬
¿ÉµÃÔÚµãx=0´¦µÄÇÐÏßбÂÊΪ$\frac{{e}^{0}+{e}^{0}}{2}$=1£¬ÇеãΪ£¨0£¬0£©£¬
ËùÒÔÇÐÏß·½³ÌΪy=x£®
µãÆÀ ±¾Ì⿼²éµ¼ÊýµÄÔËÓãºÇóÇÐÏߵķ½³Ì£¬Í¬Ê±¿¼²éË«Çúº¯ÊýµÄÐÔÖÊ£¬×¢ÒâÔËÓÃÀà±È˼Ï룬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®¹ýÅ×ÎïÏßy2=4xµÄ½¹µãFµÄÖ±ÏßÓëÆä½»ÓÚA£¬BÁ½µã£¬|AF|£¾|BF|£¬Èç¹û|AF|=5£¬ÄÇô|BF|=£¨¡¡¡¡£©
| A£® | $\frac{{3\sqrt{5}}}{2}$ | B£® | $\frac{5}{4}$ | C£® | $\frac{5}{2}$ | D£® | $\frac{3}{2}$ |
10£®¸´ÊýzÂú×ãz=£¨5+2i£©2£¬ÔòzµÄ¹²éÊýÔÚ¸´Æ½ÃæÉ϶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
11£®ÔÚµ÷²éÄÐÅ®³Ë¿ÍÊÇ·ñÔλúµÄÇé¿öÖУ¬ÒÑÖªÄг˿ÍÔλúΪ28ÈË£¬²»»áÔλúµÄÒ²ÊÇ28ÈË£¬¶øÅ®³Ë¿ÍÔλúΪ28ÈË£¬²»»áÔλúµÄΪ56ÈË£¬
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý½¨Á¢Ò»¸ö2¡Á2µÄÁÐÁª±í£»
£¨2£©ÅжÏÊÇ·ñÄÜÓÐ95%µÄ°ÑÎÕ˵ÔλúÓëÐÔ±ðÓйأ¿
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý½¨Á¢Ò»¸ö2¡Á2µÄÁÐÁª±í£»
£¨2£©ÅжÏÊÇ·ñÄÜÓÐ95%µÄ°ÑÎÕ˵ÔλúÓëÐÔ±ðÓйأ¿
| P£¨K2¡Ýk0£© | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
9£®Èôa£¾3£¬Ôò·½³Ìx3-ax2+1=0ÔÚÇø¼ä£¨0£¬2£©ÉϵÄʵ¸ù¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 3 ¸ö | B£® | 2 ¸ö | C£® | 1¸ö | D£® | 0¸ö |