题目内容
4.在数列{an}中,a1=1,$({n^2}+2n)({a_{n+1}}-{a_n})=1(n∈{N^*})$,则通项公式an=$\frac{7}{4}-\frac{2n+1}{2n(n+1)}$.分析 把已知数列递推式变形,然后利用累加法求数列的通项公式.
解答 解:由$({n^2}+2n)({a_{n+1}}-{a_n})=1(n∈{N^*})$,得:
${a}_{n+1}-{a}_{n}=\frac{1}{{n}^{2}+2n}=\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
$\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n+1})+\frac{1}{2}(\frac{1}{n-2}-\frac{1}{n})+…+\frac{1}{2}(1-\frac{1}{3})+1$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1})+1=\frac{7}{4}-\frac{2n+1}{2n(n+1)}$.
故答案为:$\frac{7}{4}-\frac{2n+1}{2n(n+1)}$.
点评 本题考查数列递推式,考查了累加法求数列的通项公式,是中档题.
练习册系列答案
相关题目
12.在△ABC中,a,b,c分别为A,B,C的对边,已知a,b,c成等比数列,a2-c2=ac+bc,a=6,则 $\frac{b}{sinB}$=( )
| A. | 12 | B. | $6\sqrt{2}$ | C. | $4\sqrt{3}$ | D. | 6 |
16.
设函数f(x)在R上可导,其导函数为f′(x),若y=(1-x)f′(x)的图象如图所示,则下列结论成立的是( )
| A. | 函数f(x)有极大值f(-2)和极小值f(2) | B. | 函数f(x)有极大值f(-3)和极小值f(1) | ||
| C. | 函数f(x)有极大值f(-3)和极小值f(3) | D. | 函数f(x)有极大值f(3)和极小值f(-2) |
13.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y-a2=0与该圆的位置关系是( )
| A. | 相切 | B. | 相交 | C. | 相离 | D. | 相切或相交 |