题目内容

20.如图,已知长方体ABCD-A1B1C1D1的底面ABCD是边长为4的正方形,高AA1=4$\sqrt{2}$,P为CC1的中点.
(1)求证:BD⊥A1P;
(2)求二面角C-PD-B的余弦值.

分析 (1)根据线面垂直的判定定理,要证BD⊥BD⊥A1P.,只证BD⊥AC,BD⊥AA1即可;
(2)以D为原点建立直角坐标系,则D(0,0,0),B(4,4,0),P(0,4,2$\sqrt{2}$),求出面PDB、面CDP的法向量即可.

解答 解:(1)证明:在长方体AC1中,连结A1C1,AC
∵底面ABCD是正方形,∴对角线BD⊥AC.
又∵A1A⊥平面ABCD,∴A1A⊥BD.
AC∩A1A=A,AC?面A1ACC1,A1A?面A1ACC1
∴BD⊥面A1ACC1.∵A1P?面A1ACC1∴BD⊥A1P.
(2)如图以D为原点建立直角坐标系,则D(0,0,0)
B(4,4,0),P(0,4,2$\sqrt{2}$)
于是$\overrightarrow{BD}=(-4,-4,0)$,$\overrightarrow{PD}=(0,-4,-2\sqrt{2}$).
设$\overrightarrow{m}=(x,y,z)$是面PDB的法向量,由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=-4x-4y=0}\\{\overrightarrow{m}•\overrightarrow{PD}=-4y-2\sqrt{2}z=0}\end{array}\right.$,
∴$\overrightarrow{m}=(\sqrt{2},-\sqrt{2},2)$.
面CDP的法向量为$\overrightarrow{n}=(1,0,0)$.
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\sqrt{2}}{\sqrt{8}•1}=\frac{1}{2}$,∴二面角C-PD-B的余弦值为$\frac{1}{2}$.

点评 本题考查了空间异面直线垂直的证明方法,及向量法求二面角,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网