题目内容

2.若sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,且α∈($\frac{π}{4}$,$\frac{5π}{4}$),则cosα=(  )
A.-$\frac{7\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

分析 由条件利用同角三角函数的基本关系求得cos(α+$\frac{π}{4}$),再利用两角差的余弦公式求得cosα的值.

解答 解:∵sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,且α∈($\frac{π}{4}$,$\frac{5π}{4}$),∴α+$\frac{π}{4}$∈($\frac{π}{2}$,π),
则cos(α+$\frac{π}{4}$)=-$\sqrt{{1-sin}^{2}(α+\frac{π}{4})}$=-$\frac{4}{5}$,
∴cosα=cos[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=cos(α+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(α+$\frac{π}{4}$)sin$\frac{π}{4}$ 
=-$\frac{4}{5}$•$\frac{\sqrt{2}}{2}$+$\frac{3}{5}$•$\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网