题目内容
2.若sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,且α∈($\frac{π}{4}$,$\frac{5π}{4}$),则cosα=( )| A. | -$\frac{7\sqrt{2}}{10}$ | B. | $\frac{\sqrt{2}}{10}$ | C. | $\frac{7\sqrt{2}}{10}$ | D. | -$\frac{\sqrt{2}}{10}$ |
分析 由条件利用同角三角函数的基本关系求得cos(α+$\frac{π}{4}$),再利用两角差的余弦公式求得cosα的值.
解答 解:∵sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,且α∈($\frac{π}{4}$,$\frac{5π}{4}$),∴α+$\frac{π}{4}$∈($\frac{π}{2}$,π),
则cos(α+$\frac{π}{4}$)=-$\sqrt{{1-sin}^{2}(α+\frac{π}{4})}$=-$\frac{4}{5}$,
∴cosα=cos[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=cos(α+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(α+$\frac{π}{4}$)sin$\frac{π}{4}$
=-$\frac{4}{5}$•$\frac{\sqrt{2}}{2}$+$\frac{3}{5}$•$\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$,
故选:D.
点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.
练习册系列答案
相关题目
12.
我市三所重点中学进行高二期末联考,共有6000名学生参加,为了了解数学学科的学习情况,现从中随机抽取若干名学生在这次测试中的数学成绩,制成如下频率分布表:
(1)根据频率分布表,推出①,②,③,④处的数字分别为:3、0.025、0.100、1.
(2)在所给的坐标系中画出[80,150]上的频率分布直方图;
(3)根据题中的信息估计总体:①120分及以上的学生人数;②成绩在[127,150]中的概率.
| 分组 | 频数 | 频率 |
| [80,90) | ① | ② |
| [90,100) | 0.050 | |
| [100,110) | 0.200 | |
| [110,120) | 36 | 0.300 |
| [120,130) | 0.275 | |
| [130,140) | 12 | ③ |
| [140,150) | 0.50 | |
| 合计 | ④ |
(2)在所给的坐标系中画出[80,150]上的频率分布直方图;
(3)根据题中的信息估计总体:①120分及以上的学生人数;②成绩在[127,150]中的概率.
13.直线2x-3y=12在x轴上的截距为a,在y轴上的截距为b,则( )
| A. | a=6,b=4 | B. | a=-6,b=-4 | C. | a=-6,b=4 | D. | a=6,b=-4 |
17.已知集合A={x|x≥3},B={1,2,3,4,5}则A∩B=( )
| A. | {1,2,3} | B. | {2,3,4} | C. | {3,4,5} | D. | {1,2,3,4,5} |
14.12月26号南昌地铁一号线正式运营,从此开创了南昌地铁新时代,南昌人民有了自己开往春天的地铁.设地铁在某段时间内进行调试,由始点起经过t分钟后的距离为s=$\frac{1}{4}$t4-4t3+16t2,则列车瞬时速度为零的时刻是( )
| A. | 4分末 | B. | 8分末 | C. | 0分与8分末 | D. | 0分,4分,8分末 |
11.点(a,b)关于直线x+y=1的对称点的坐标是( )
| A. | (1-b,1-a) | B. | (1-a,1-b) | C. | (-a,-b) | D. | (-b,-a) |