题目内容

16.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为(  )
A.54B.162C.54+18$\sqrt{3}$D.162+18$\sqrt{3}$

分析 由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6$\sqrt{2}$的等边三角形组成,累加各个面的面积可得答案.

解答 解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,
其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6$\sqrt{2}$的等边三角形组成,
故表面积S=3×6×6+3×$\frac{1}{2}$×6×6+$\frac{\sqrt{3}}{4}$×$(6\sqrt{2})^{2}$=162+18$\sqrt{3}$,
故选:D

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网