题目内容
已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2014)的值为( )
| A、2014 | B、-2014 |
| C、0 | D、4 |
考点:抽象函数及其应用
专题:函数的性质及应用
分析:由函数f(x+1)的图象关于直线x=-1对称且由y=f(x+1)向右平移1个单位可得y=f(x)的图象可知函数y=f(x)的图象关于x=0对称即函数y=f(x)为偶函数,在已知条件中令x=-2可求f(2)及函数的周期,利用所求周期即可求解
解答:
解:∵函数f(x+1)的图象关于直线x=-1对称且把y=f(x+1)向右平移1个单位可得y=f(x)的图象
∴函数y=f(x)的图象关于x=0对称,即函数y=f(x)为偶函数
∵f(x+4)=f(x)+f(2),
令x=-2可得f(2)=f(-2)+f(2),∴f(-2)=f(2)=0,
从而可得f(x+4)=f(x),
即函数是以4为周期的周期函数
∴f(2014)=f(503×4+2)=f(2)=0
故选:C.
∴函数y=f(x)的图象关于x=0对称,即函数y=f(x)为偶函数
∵f(x+4)=f(x)+f(2),
令x=-2可得f(2)=f(-2)+f(2),∴f(-2)=f(2)=0,
从而可得f(x+4)=f(x),
即函数是以4为周期的周期函数
∴f(2014)=f(503×4+2)=f(2)=0
故选:C.
点评:本题主要考出了函数的图象的平移及函数图象的对称性的应用,利用赋值求解抽象函数的函数值,函数周期的求解是解答本题的关键所在.
练习册系列答案
相关题目
已知在△ABC中,∠C=90°,BC=2,则
•
=( )
| AB |
| BC |
| A、2 | B、-4 | C、-2 | D、4 |
已知椭圆
+
=1的一个焦点为(2,0),则椭圆的长轴长是( )
| x2 |
| a2 |
| y2 |
| 2 |
A、
| ||
B、2
| ||
| C、4 | ||
D、2
|
已知函数f(x)=|x2-4|-3x+m恰有两个不同的零点,则实数m的取值范围是( )
A、(-6,6)∪(
| ||
B、(
| ||
C、(-∞,-
| ||
D、(-
|
设直线l经过点P(2,1),且A(0,4)、B(4,8)两点到直线l的距离相等,则直线l的方程是( )
| A、x-y-1=0 |
| B、x-y-1=0或x-y-4=0 |
| C、x+y-3=0 |
| D、x-y-1=0或x=2 |