题目内容

10.甲、乙两人约定在下午 4:30:5:00 间在某地相见,且他们在 4:30:5:00 之间 到达的时刻是等可能的,约好当其中一人先到后一定要等另一人 20 分钟,若另一人仍不到则可以离去,则这两人能相见的概率是(  )
A.$\frac{3}{4}$B.$\frac{8}{9}$C.$\frac{7}{16}$D.$\frac{11}{12}$

分析 由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω:{(x,y)|0≤x≤30,0≤y≤30},做出集合对应的面积是边长为30的正方形的面积,写出满足条件的事件对应的集合和面积,根据面积之比得到概率

解答 解:因为两人谁也没有讲好确切的时间,
故样本点由两个数(甲乙两人各自到达的时刻)组成.
以4:30点钟作为计算时间的起点建立如图所示的平面直角坐标系,设甲乙各在第x分钟和第y分钟到达,则样本空间为Ω:{(x,y)|0≤x≤30,0≤y≤30},画成图为一正方形.
会面的充要条件是|x-y|≤20,即事件A={可以会面}所对应的区域是图中的阴影线部分,
∴由几何概型公式知所求概率为面积之比,即P(A)=$\frac{3{0}^{2}-1{0}^{2}}{3{0}^{2}}=\frac{8}{9}$;
故选B.

点评 本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网