题目内容
14.已知正三角形ABC的顶点A,B在抛物线y2=4x上,另一个顶点C(4,0),则这样的正三角形有( )| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 根据题意和抛物线以及正三角形的对称性,可推断出两个边的斜率,进而表示出这两条直线,每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形,可知当等边三角形关于x轴轴对称时,有两个.
解答
解:由题意,当等边三角形关于x轴轴对称时
两个边的斜率k=±tan30°=±$\frac{\sqrt{3}}{3}$,其方程为:
y=±$\frac{\sqrt{3}}{3}$(x-4),
每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形,这样的正三角形有2个,图中黑色的两个.
两个顶点同时在抛物线上方如图中蓝色,或同时在下方各一个如图中绿色,
故选D.
点评 本题主要考查了抛物线的简单性质和数形结合思想,主要是利用抛物线和正三角形的对称性.
练习册系列答案
相关题目
8.设f'(x)是函数f(x)(x∈R)的导数,且满足xf'(x)-2f(x)>0,若△ABC中,∠C是钝角,则( )
| A. | f(sinA)•sin2B>f(sinB)•sin2A | B. | f(sinA)•sin2B<f(sinB)•sin2A | ||
| C. | f(cosA)•sin2B>f(sinB)•cos2A | D. | f(cosA)•sin2B<f(sinB)•cos2A |
6.在△ABC中,D为三角形所在平面内一点,且$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,则$\frac{{{S_{△BCD}}}}{{{S_{△ABD}}}}$=( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
12.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,则函数g(x)=ax3+bx2+cx是( )
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 非奇非偶函数 | D. | 既是奇函数又是偶函数 |