题目内容

8.设f'(x)是函数f(x)(x∈R)的导数,且满足xf'(x)-2f(x)>0,若△ABC中,∠C是钝角,则(  )
A.f(sinA)•sin2B>f(sinB)•sin2AB.f(sinA)•sin2B<f(sinB)•sin2A
C.f(cosA)•sin2B>f(sinB)•cos2AD.f(cosA)•sin2B<f(sinB)•cos2A

分析 求出函数的导数,得到函数的单调性,从而判断出结论即可.

解答 解:∵${[\frac{f(x)}{{x}^{2}}]}^{′}$=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
x>0时,${[\frac{f(x)}{{x}^{2}}]}^{′}$>0,
∴$\frac{f(x)}{{x}^{2}}$在(0,+∞)递增,
又∵∠C是钝角,∴cosA>sinB>0,
∴$\frac{f(cosA)}{{cos}^{2}A}$>$\frac{f(sinB)}{{sin}^{2}B}$,
∴f(cosA)sin2B>f(sinB)cos2A,
故选:C.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网