题目内容
3.若将θ视为变量,则以原点为圆心,r为半径的圆可表示为$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ∈[0,2π)),问下列何种表示可表示以(a,b)为圆心,r为半径的圆( )| A. | $\left\{\begin{array}{l}{x=rcosθ-a}\\{y=rsinθ-b}\end{array}\right.$(θ∈[0,2π)) | B. | $\left\{\begin{array}{l}{x=rcosθ+a}\\{y=rsinθ+b}\end{array}\right.$(θ∈[0,2π)) | ||
| C. | $\left\{\begin{array}{l}{x=-rcosθ-a}\\{y=-rsinθ-b}\end{array}\right.$(θ∈[0,2π)) | D. | $\left\{\begin{array}{l}{x=rsinθ-a}\\{y=rcosθ-b}\end{array}\right.$(θ∈[0,2π)) |
分析 利用类比的方法,即可得出结论.
解答 解:以原点为圆心,r为半径的圆可表示为$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ∈[0,2π)),以(a,b)为圆心,r为半径的圆的参数方程为$\left\{\begin{array}{l}{x=rcosθ+a}\\{y=rsinθ+b}\end{array}\right.$(θ∈[0,2π)),
故选B.
点评 本题考查圆的参数方程,考查类比方法的运用,比较基础.
练习册系列答案
相关题目
13.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,M、N分别是A1B1、A1D1中点,则BM与AN所成的角的余弦值为( )
| A. | $\frac{15}{17}$ | B. | $\frac{16}{17}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
11.已知等差数列{an}前9项的和为27,a10=8,则a100=( )
| A. | 97 | B. | 98 | C. | 99 | D. | 100 |
8.
已知函数f(x)=sin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则($\overrightarrow{BD}$+$\overrightarrow{BE}$)•($\overrightarrow{BE}$-$\overrightarrow{CE}$)的值为( )
| A. | -1 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
13.在梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,则$\overrightarrow{BC}$等于( )
| A. | -$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$ | B. | -$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$ | C. | $\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$ | D. | -$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$ |