题目内容
已知数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*)
(1)求数列{an}的通项an的表达式.
(2)记bn=an+1,Tn=
bibj(i,j∈N*),证明:
≤
+
+…+
<
(n∈N*)(其中
bibj表示所有的积bibj(1≤i≤j≤n)的和)
(1)求数列{an}的通项an的表达式.
(2)记bn=an+1,Tn=
| 1≤i≤j≤n |
| 1 |
| 7 |
| T1 |
| T2 |
| T1•T3 |
| T2•T4 |
| T1•T3…T2n-1 |
| T2•T4…T2n |
| 4 |
| 21 |
| 1≤i≤j≤n |
考点:数列与不等式的综合,数列的求和
专题:点列、递归数列与数学归纳法,不等式的解法及应用
分析:(1)在数列递推式中取n=1求得首项,取n=n-1得另一递推式,作差后得到等比数列{an+1},求得其通项公式后得到数列{an}的通项;
(2)把数列{an}的通项代入bn=an+1,写出Tn=
bibj(i,j∈N*),利用等比数列求和后借助于放缩法证明数列不等式
≤
+
+…+
<
.
(2)把数列{an}的通项代入bn=an+1,写出Tn=
| 1≤i≤j≤n |
| 1 |
| 7 |
| T1 |
| T2 |
| T1•T3 |
| T2•T4 |
| T1•T3…T2n-1 |
| T2•T4…T2n |
| 4 |
| 21 |
解答:
(1)解:由Sn=2an-n①.
令n=1,则S1=2a1-1,即a1=2a1-1,
∴a1=1.
当n≥2时,Sn-1=2an-1-(n-1)②.
①-②得an=2an-2an-1-1,
∴an=2an-1+1,
则an+1=2(an-1+1),
∴an+1=2n,
∴an=2n-1;
(2)证明:bn=an+1=2n,
则Tn=
bibj=
[(b1+b2+…+bn)2+(b12+b22+…+bn2)]
=
[(2+22+…+2n)2+(22+24+26+…+22n)]
=
[(2n+1-2)2+
(4n-1)]=
(2n-1)(2n+1-1)(n∈N*).
令cn=
.
则当n≥2时,cn=
•
…
=
=
=
•
<
•
=
cn-1<(
)n-1c1,
又c1=
=
<
,
∴对一切n∈N*有:
+
+…+
=c1+c2+…cn<c1+
c1+(
)2c1+…(
)n-1c1
=c1•
=
(1-(
)n)<
.
另一方面cn>0恒成立,
∴对一切n∈N*有:
+
+…+
=c1+c2+…cn≥c1=
.
综上:
≤
+
+…+
<
(n∈N*).
令n=1,则S1=2a1-1,即a1=2a1-1,
∴a1=1.
当n≥2时,Sn-1=2an-1-(n-1)②.
①-②得an=2an-2an-1-1,
∴an=2an-1+1,
则an+1=2(an-1+1),
∴an+1=2n,
∴an=2n-1;
(2)证明:bn=an+1=2n,
则Tn=
| 1≤i≤j≤n |
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
| 4 |
| 3 |
| 4 |
| 3 |
令cn=
| T1•T3…T2n-1 |
| T2•T4…T2n |
则当n≥2时,cn=
| (21-1)(22-1) |
| (22-1)(23-1) |
| (23-1)(24-1) |
| (24-1)(25-1) |
| (22n-1-1)(22n-1) |
| (22n-1)(22n+1-1) |
=
| 21-1 |
| 22n+1-1 |
| 1 |
| 22n+1-1 |
| 1 |
| 4 |
| 1 | ||
22n+1-
|
| 1 |
| 4 |
| 1 |
| 22n+1-1 |
| 1 |
| 4 |
| 1 |
| 4 |
又c1=
| 1 |
| 23-1 |
| 1 |
| 7 |
| 4 |
| 21 |
∴对一切n∈N*有:
| T1 |
| T2 |
| T1•T3 |
| T2•T4 |
| T1•T3…T2n-1 |
| T2•T4…T2n |
=c1+c2+…cn<c1+
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
=c1•
1-(
| ||
1-
|
| 4 |
| 21 |
| 1 |
| 4 |
| 4 |
| 21 |
另一方面cn>0恒成立,
∴对一切n∈N*有:
| T1 |
| T2 |
| T1•T3 |
| T2•T4 |
| T1•T3…T2n-1 |
| T2•T4…T2n |
=c1+c2+…cn≥c1=
| 1 |
| 7 |
综上:
| 1 |
| 7 |
| T1 |
| T2 |
| T1•T3 |
| T2•T4 |
| T1•T3…T2n-1 |
| T2•T4…T2n |
| 4 |
| 21 |
点评:本题考查了等比关系的确定,考查了数列的求和,训练了放缩法证明数列不等式,考查了学生的计算能力,是压轴题.
练习册系列答案
相关题目