题目内容

10.已知实数a,b满足a+b=1.
(Ⅰ)求证:${a^3}+{b^3}\;≥\frac{1}{4}$;
(Ⅱ)若至少存在一个实数x,使得|x-a|+|x-b|≤5成立,求实数2a+3b的取值范围.

分析 (Ⅰ)利用立方和公式、结合配方法,即可证明;
(Ⅱ)若至少存在一个实数x,使得|x-a|+|x-b|≤5成立,则|a-b|≤5,由此求实数2a+3b的取值范围.

解答 (Ⅰ)证明:a3+b3=(a+b)(a2-ab+b2)=a2-a(1-a)+(1-a)2=$3(a-\frac{1}{2})^{2}+\frac{1}{4}$≥$\frac{1}{4}$;
(Ⅱ)解:|x-a|+|x-b|≥|x-a-x+b|=|a-b|,至少存在一个实数x,使得|x-a|+|x-b|≤5成立,则|a-b|≤5,
∵a+b=1,∴b=1-a,
∴|a-(1-a)|≤5,
∴-2≤a≤3,
∴2a+3b=3-a∈[0,5].

点评 本题考查不等式的证明,考查绝对值不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网