题目内容

1.已知矩形ABCD中,$AB=\sqrt{2}$,BC=1,现沿对角线BD折成二面角C-BD-A,使AC=1

(I)求证:DA⊥面ABC
(II)求二面角A-CD-B的大小.

分析 (Ⅰ)推导出∠DAB=90°,DA⊥AC,由此能证明DA⊥面ABC.
(Ⅱ)取AB,DB的中点O,N,则直线OC,ON,OA两两垂直,建立空间直角坐标系,利用向量法能求出二面角A-CD-B的大小.

解答 证明:(Ⅰ)∵矩形ABCD中,$AB=\sqrt{2}$,BC=1,现沿对角线BD折成二面角C-BD-A,使AC=1,
∴∠DAB=90°,$DA=1,DC=\sqrt{2}$,
∴DC2=AC2+DA2,则DA⊥AC,
又AB∩AC=A,
∴DA⊥面ABC.
解:(Ⅱ)由(Ⅰ)知DA⊥面ABC,则平面CAB⊥平面ABD,
又AC=BC,∠DAB=90°,取AB,DB的中点O,N,
则直线OC,ON,OA两两垂直,建立如图所示的直角坐标系,
则$A(0,\frac{{\sqrt{2}}}{2},0)$,$D(1,\frac{{\sqrt{2}}}{2},0)$$C(0,0,\frac{{\sqrt{2}}}{2})$,$B(0,-\frac{{\sqrt{2}}}{2},0)$,
则$\overrightarrow{DC}=(-1,-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$,$\overrightarrow{AD}=(1,0,0)$,$\overrightarrow{BD}=(1,\sqrt{2},0)$,
设平面BCD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DC}=-x-\frac{\sqrt{2}}{2}y+\frac{\sqrt{2}}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{BD}=x+\sqrt{2}y=0}\end{array}\right.$,取x=$\sqrt{2}$,得$\overrightarrow{n}$=($\sqrt{2}$,-1,1),
设平面ACD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DC}=-a-\frac{\sqrt{2}}{2}b+\frac{\sqrt{2}}{2}c=0}\\{\overrightarrow{m}•\overrightarrow{AD}=a=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,1),
∵$\overrightarrow{m}•\overrightarrow{n}$=0-1+1=0,
∴平面ACD⊥平面BCD,
∴二面角A-CD-B的大小为$\frac{π}{2}$.

点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网