题目内容
10.在平面直角坐标系内,区域M满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤1\end{array}$区域N满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤sinx\end{array}$则向区域M内投一点,落在区域N内的概率是( )| A. | $\frac{2}{π}$ | B. | $\frac{π}{4}$ | C. | 2-$\frac{2}{π}$ | D. | 2-$\frac{π}{4}$ |
分析 由题意,首先求出区域M,N的面积,然后利用面积比求概率.
解答 解:由题意,区域M的面积是π,
区域N的面积为${∫}_{0}^{π}$sin xdx=-cos x|${\;}_{0}^{π}$=2,
所以,所求概率是$\frac{2}{π}$.
故选A.
点评 本题考查几何概型的概率求法;明确几何测度为区域的面积是关键.
练习册系列答案
相关题目
18.已知集合A={y|y=log2x,x>1},B={x|y=$\frac{1}{\sqrt{1-2x}}$},则A∩B=( )
| A. | {y|0<y<$\frac{1}{2}$} | B. | {y|0<y<1} | C. | {y|$\frac{1}{2}$<y<1} | D. | ∅ |
5.已知R是实数集,集合 A={x|22x+1≥16},B={x|(x-1)(x-3)<0,则(∁RA)∩B=( )
| A. | (1,2) | B. | [1,2] | C. | (1,3) | D. | (1,$\frac{3}{2}$) |
15.用反证法证明命题:“已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1”时,其中假设正确的是( )
| A. | 方程x2+ax+b=0的两根的绝对值中只有一个小于1 | |
| B. | 方程x2+ax+b=0的两根的绝对值至少有一个小于1 | |
| C. | 方程x2+ax+b=0的两根的绝对值都大于或等于1 | |
| D. | 方程x2+ax+b=0的两根的绝对值至少有一个大于或等于1 |
2.已知函数f(x)的定义域为R,当x>0时,f(x)<2,对任意的x,y∈R,f(x)+f(y)=f(x+y)+2成立,若数列{an}满足a1=f(0),且f(an+1)=f($\frac{{a}_{n}}{{a}_{n}+3}$),n∈N*,则a2017的值为( )
| A. | 2 | B. | $\frac{6}{2×{3}^{2016}-1}$ | C. | $\frac{2}{2×{3}^{2016}-1}$ | D. | $\frac{2}{2×{3}^{2015}-1}$ |
19.已知函数$f(x)=x-{e^{\frac{x}{a}}}$(a>0),且y=f(x)的图象在x=0处的切线l与曲y=ex相切,符合情况的切线( )
| A. | 有0条 | B. | 有1条 | C. | 有2条 | D. | 有3条 |