题目内容

4.某商店每双皮鞋的进货价为80元,根据以往经验,以每双90元销售时,每月能卖出400双,而每加价1元或减价1元销售时,每月销量会减少或增加20双,为了每月获取最大利润,商店应如何定价?每月的最大利润为多少?

分析 假设售价在90元的基础上涨x元,从而得到销售量,进而可以构建函数关系式,利用二次函数求最值的方法求出函数的最值.

解答 解:设售价在90元的基础上涨或减价x元,因为这种商品每个涨价或减价1元,其销售量就减少或增加20个,所以若涨或减价x元,则销售量减少或增加20x
则按90+x元售出时,能售出400-20x个,每个的利润是90+x-80=10+x元
设总利润为y元,则y=(10+x)(400-20x)=-20x2+200x+4000,对称轴为x=5,定义域为(0≤x<20),
所以x=5时,y有最大值,售价则为95元,
所以售价定为每个95元时,利润最大,每月的最大利润为4500元.

点评 本题以实际问题为载体,考查函数模型的构建,考查利用数学知识解决实际问题,解题的关键是构造利润函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网