题目内容

当a取不同的实数时,由方程x2+y2+2ax+2ay-1=0可以得到不同的圆,则(  )
A、这些圆的圆心都在直线y=x上
B、这些圆的圆心都在直线y=-x上
C、这些圆的圆心都在直线y=x或直线y=-x上
D、这些圆的圆心不在同一直线上
考点:圆的一般方程
专题:计算题,直线与圆
分析:圆的方程化为标准方程,确定圆心坐标,即可得结论.
解答: 解:原方程配方得(x+a)2+(y+a)2=1+2a2
∴方程表示圆心是(-a,-a),半径是
1+2a2
的圆
设圆心坐标为(x,y),则有
x=-a
y=-a
,消去a可得y=x,故圆心必在直线y=x上.
故选:A.
点评:本题考查圆的一般方程与标准方程,考查消参法的运用,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网