题目内容

已知函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π),一个周期内的函数图象如图所示,求函数解析式.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
解答: 解:由函数的解析式可得A=
3
T
2
=
π
ω
=
6
-
π
3
,求得ω=2.
再把点(
π
3
,0)(
6
,0)代入函数的解析式可得
3
sin(
3
+φ )=0,且
3
sin(
3
+φ )=0,
3
+φ=kπ,k∈z,且
3
+φ=kπ,k∈z.
结合0<φ<2π,∴φ=
3

故函数的解析式为y=
3
sin(2x+
3
).
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网