题目内容
已知Sn为数列{an}的前n项和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求数列{an}的通项an;
(2)若bn=
,求数列{bn}的前n项和Tn;
(3)设ck=
,{ck}的前n项和为An,是否存在最小正整数m,使得不等式An<m对任意正整数n恒成立?若存在,求出m的值;若不存在,说明理由.
(1)求数列{an}的通项an;
(2)若bn=
| n |
| 4an |
(3)设ck=
| k+2 |
| Sk(Tk+k+1) |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)在数列递推式中取n=n-1得另一递推式,作差后即可证得数列为等比数列,代入等比数列的通项公式得答案;
(2)把数列{an}的通项代入bn=
,然后利用错位相减法求数列{bn}的前n项和Tn;
(3)把Sk,Tk代入ck=
,整理后利用裂项相消法化简,放缩后可证得数列不等式.
(2)把数列{an}的通项代入bn=
| n |
| 4an |
(3)把Sk,Tk代入ck=
| k+2 |
| Sk(Tk+k+1) |
解答:
(1)当n=1时,a2=S1+1=a1+1=2;
当n≥2时,Sn+1=an+1,Sn-1+1=an,相减得an+1=2an,
又a2=2a1,
{an}是首项为1,公比为2的等比数列,
∴an=2n-1;
(2)由(1)知an=2n-1,
∴bn=
=
=
,
∴Tn=
+
+
+…+
,
Tn=
+
+…+
+
,
两式相减得
Tn=
+
+…+
-
=
-
=
-
,
∴Tn=1-
;
(3)CK=
=
=
=
=2(
-
).
∴
=
2(
-
)=2(1-
)<2.
若不等式∴
<m对任意正整数n恒成立,则m≥2,
∴存在最小正整数m=2,使不等式∴
<m对任意正整数n恒成立.…(14分)
当n≥2时,Sn+1=an+1,Sn-1+1=an,相减得an+1=2an,
又a2=2a1,
{an}是首项为1,公比为2的等比数列,
∴an=2n-1;
(2)由(1)知an=2n-1,
∴bn=
| n |
| 4an |
| n |
| 4•2n-1 |
| n |
| 2n+1 |
∴Tn=
| 1 |
| 22 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 23 |
| 2 |
| 24 |
| n-1 |
| 2n+1 |
| n |
| 2n+2 |
两式相减得
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
| n |
| 2n+2 |
| ||||
1-
|
| n |
| 2n+2 |
| 1 |
| 2 |
| n+2 |
| 2n+2 |
∴Tn=1-
| n+2 |
| 2n+1 |
(3)CK=
| k+2 |
| Sk(Tk+k+1) |
| k+2 | ||
(2k-1)(1-
|
| 1 | ||
(2k-1)(1-
|
=
| 2k+1 |
| (2k-1)(2k+1-1) |
| 1 |
| 2k-1 |
| 1 |
| 2k+1-1 |
∴
| n |
| k=1 |
| k+2 |
| Sk•(Tk+k+1) |
| n |
| k=1 |
| 1 |
| 2k-1 |
| 1 |
| 2k+1-1 |
| 1 |
| 2k+1-1 |
若不等式∴
| n |
| k=1 |
| k+2 |
| Sk•(Tk+k+1) |
∴存在最小正整数m=2,使不等式∴
| n |
| k=1 |
| k+2 |
| Sk•(Tk+k+1) |
点评:本题考查了等比关系的确定,考查了裂项相消法与错位相减法求数列的和,训练了放缩法证明数列不等式,是压轴题.
练习册系列答案
相关题目
已知P(x,y),A(3,1),B(1,2)在同一直线上,那么2x+4y的最小值是( )
A、2
| ||
B、4
| ||
| C、16 | ||
| D、20 |