ÌâÄ¿ÄÚÈÝ
ÒÑÖªÀëÐÄÂÊ·Ö±ðΪe1¡¢e2µÄÍÖÔ²C1£º
+
=1£¨a£¾b£¾0£©ºÍË«ÇúÏßC2£º
-
=1µÄÁ½¸ö¹«¹²¶¥µãΪA¡¢B£¬ÈôP¡¢Q·Ö±ðΪ˫ÇúÏßC2ºÍÍÖÔ²C1Éϲ»Í¬ÓÚA¡¢BµÄ¶¯µã£¬ÇÒÂú×ã
+
=¦Ë£¨
+
£©£¨¦Ë¡ÊR£¬|¦Ë|£¾1£©£®Èç¹ûÖ±ÏßAP¡¢BP¡¢AQ¡¢BQµÄбÂÊÒÀ´Î¼ÇΪk1¡¢k2¡¢k3¡¢k4£®
£¨1£©ÇóÖ¤£ºe12+e22=2£»
£¨2£©ÇóÖ¤£ºk1+k2+k3+k4=0£»
£¨3£©ÉèF1¡¢F2·Ö±ðΪÍÖÔ²C1ºÍË«ÇúÏßC2µÄÓÒ½¹µã£¬ÈôPF2¡ÎQF1£¬Çók12+k22+k32+k42µÄÖµ£®
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| AP |
| BP |
| AQ |
| BQ |
£¨1£©ÇóÖ¤£ºe12+e22=2£»
£¨2£©ÇóÖ¤£ºk1+k2+k3+k4=0£»
£¨3£©ÉèF1¡¢F2·Ö±ðΪÍÖÔ²C1ºÍË«ÇúÏßC2µÄÓÒ½¹µã£¬ÈôPF2¡ÎQF1£¬Çók12+k22+k32+k42µÄÖµ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃe1=
=
£¬e2=
=
£¬ÓÉ´ËÄÜÖ¤Ã÷e12+e22=2£®
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬x12-a2=
y12£¬k1+k2=
+
=
¡Á
£¬k3+k4=
+
=-
¡Á
£¬ÓÉ´ËÄÜÖ¤Ã÷k1+k2+k3+k4=0£®
£¨3£©ÓÉ¢ÙµÃ(k1+k2)2=
¡Á
=4£¬ÓÉ£¨2£©µÃk3+k4=-£¨k1+k2£©£¬(k3+k4)2=4£¬k1k2=
£¬k3k4=
¡Á
=-
£¬ÓÉ´ËÄÜÇó³ök12+k22+k32+k42µÄÖµ£®
| c |
| a |
| ||
| a |
| c¡ä |
| a |
| ||
| a |
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬x12-a2=
| a2 |
| b2 |
| y1 |
| x1+a |
| y1 |
| x1-a |
| 2b2 |
| a2 |
| x1 |
| y1 |
| y2 |
| x2+a |
| y2 |
| x2-a |
| 2b2 |
| a2 |
| x2 |
| y2 |
£¨3£©ÓÉ¢ÙµÃ(k1+k2)2=
| 4b4 |
| a4 |
| a4 |
| b4 |
| b2 |
| a2 |
| y2 |
| x2+a |
| y2 |
| x1-a |
| b2 |
| a2 |
½â´ð£º
£¨1£©Ö¤Ã÷£º¡ßÀëÐÄÂÊ·Ö±ðΪe1¡¢e2µÄÍÖÔ²C1£º
+
=1£¨a£¾b£¾0£©ºÍË«ÇúÏßC2£º
-
=1£¬
¡àÓÉÒÑÖªµÃe1=
=
£¬e2=
=
£¬
¡àe12+e22=
+
=2£®
£¨2£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
¡ß
-
=1£¬¡àx12-a2=
y12£¬
k1+k2=
+
=
=
¡Á
£¬¢Ù
¡ß
+
=1£¬¡àx22-a2=-
y22£¬
¡àk3+k4=
+
=
=-
¡Á
£¬¢Ú
¡ß
=¦Ë
£¬¡àO¡¢P¡¢QÈýµã¹²Ïߣ¬
¡à
=
£¬
¡àÓÉ¢Ù¢ÚµÃk1+k2+k3+k4=0£¬
£¨3£©½â£º
+
=¦Ë2Óë
-
=1ÁªÁ¢£¬
µÃx12=
a2£¬y12=
b2£¬
¡ßPF2¡ÎQF1£¬¦Ë£¾1£¬¡à|OF2|=¦Ë|OF1|£¬
¡à¦Ë2=
£¬¡à
=
=
£¬
ÓÉ¢ÙµÃ(k1+k2)2=
¡Á
=4£¬
ÓÉ£¨2£©µÃk3+k4=-£¨k1+k2£©£¬¡à(k3+k4)2=4£¬
ÓÖ¡ßk1k2=
¡Á
=
=
£¬
k3k4=
¡Á
=
=-
£¬
¡àk12+k22+k32+k42
=£¨k1+k2£©2+(k3+k4)2-2(k1k2+k3k4)=4+4-0=8£®
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
¡àÓÉÒÑÖªµÃe1=
| c |
| a |
| ||
| a |
| c¡ä |
| a |
| ||
| a |
¡àe12+e22=
| a2-b2 |
| a2 |
| a2+b2 |
| a2 |
£¨2£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
¡ß
| x12 |
| a2 |
| y12 |
| b2 |
| a2 |
| b2 |
k1+k2=
| y1 |
| x1+a |
| y1 |
| x1-a |
| 2x1y1 |
| x12-a2 |
| 2b2 |
| a2 |
| x1 |
| y1 |
¡ß
| x22 |
| a2 |
| y22 |
| b2 |
| a2 |
| b2 |
¡àk3+k4=
| y2 |
| x2+a |
| y2 |
| x2-a |
| 2x2y2 |
| x22-a2 |
| 2b2 |
| a2 |
| x2 |
| y2 |
¡ß
| OP |
| OQ |
¡à
| x1 |
| y1 |
| x2 |
| y2 |
¡àÓÉ¢Ù¢ÚµÃk1+k2+k3+k4=0£¬
£¨3£©½â£º
| x12 |
| a2 |
| y12 |
| b2 |
| x12 |
| a2 |
| y12 |
| b2 |
µÃx12=
| ¦Ë2+1 |
| 2 |
| ¦Ë2-1 |
| 2 |
¡ßPF2¡ÎQF1£¬¦Ë£¾1£¬¡à|OF2|=¦Ë|OF1|£¬
¡à¦Ë2=
| a2+b2 |
| a2-b2 |
| x12 |
| y12 |
| (¦Ë2+1)a2 |
| (¦Ë2-1)b2 |
| a4 |
| b4 |
ÓÉ¢ÙµÃ(k1+k2)2=
| 4b4 |
| a4 |
| a4 |
| b4 |
ÓÉ£¨2£©µÃk3+k4=-£¨k1+k2£©£¬¡à(k3+k4)2=4£¬
ÓÖ¡ßk1k2=
| y1 |
| x1+a |
| y1 |
| x1-a |
| y12 |
| x12-a2 |
| b2 |
| a2 |
k3k4=
| y2 |
| x2+a |
| y2 |
| x1-a |
| y22 |
| x22-a2 |
| b2 |
| a2 |
¡àk12+k22+k32+k42
=£¨k1+k2£©2+(k3+k4)2-2(k1k2+k3k4)=4+4-0=8£®
µãÆÀ£º±¾Ì⿼²ée12+e22=2µÄÖ¤Ã÷£¬¿¼²ék1+k2+k3+k4=0µÄÖ¤Ã÷£¬¿¼²ék12+k22+k32+k42µÄÖµµÄÇ󷨣¬½âÌâʱҪעÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éèa=0.60.4£¬b=0.40.6£¬c=0.40.4£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A¡¢c£¾a£¾b |
| B¡¢a£¾b£¾c |
| C¡¢a£¾c£¾b |
| D¡¢b£¾c£¾a |