题目内容

7.已知O为原点,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上点P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,平行四边形OBPA的面积为1,则此双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\frac{1}{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

分析 求出|OA|,P点到OA的距离,利用平行四边形OBPA的面积为1,求出a,可得c,即可求出双曲线的渐近线方程.

解答 解:渐近线方程是:x±ay=0,设P(m,n)是双曲线上任一点,
过P平行于OB:x+ay=0的方程是:x+ay-m-an=0与OA方程:x-ay=0交点是A($\frac{m+an}{2}$,$\frac{m+an}{2a}$),
|OA|=|$\frac{m+an}{2}$|$\sqrt{1+\frac{1}{{a}^{2}}}$,P点到OA的距离是:d=$\frac{|m-an|}{\sqrt{1+{a}^{2}}}$
∵|OA|•d=1,
∴|$\frac{m+an}{2}$|$\sqrt{1+\frac{1}{{a}^{2}}}$•$\frac{|m-an|}{\sqrt{1+{a}^{2}}}$=1,
∵$\frac{{m}^{2}}{{a}^{2}}$-n2=1,
∴a=2,∴双曲线的渐近线方程为y=±$\frac{1}{2}x$.
故选:A.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网