题目内容

设函数f(x)=sin(ωx+φ)+
3
cos(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期为π,且满足f(-x)=f(x),则函数f(x)的单调增区间为
 
考点:两角和与差的正弦函数,正弦函数的图象
专题:三角函数的图像与性质
分析:化简函数解析式可得f(x)=2sin(ωx+φ+
π
3
),由最小正周期为π,可求ω,由f(-x)=f(x),且|φ|<
π
2
,可解得φ,由2kπ-
π
2
≤2x≤2kπ+
π
2
,k∈Z,可解得函数f(x)的单调增区间.
解答: 解:∵f(x)=sin(ωx+φ)+
3
cos(ωx+φ)=2sin[(ωx+φ)+
π
3
]=2sin(ωx+φ+
π
3
),最小正周期为π,
∴ω=
π
=2,
∵f(-x)=f(x),
∴可得:φ+
π
3
=kπ,k∈Z,
∵|φ|<
π
2

∴解得:φ=-
π
3

∴f(x)=2sin2x,
∴由2kπ-
π
2
≤2x≤2kπ+
π
2
,k∈Z,可解得:kπ-
π
4
≤x≤kπ+
π
4
,k∈Z
故答案为:[kπ-
π
4
,kπ+
π
4
],k∈Z
点评:本题主要考查了两角和与差的正弦函数公式的应用,正弦函数的图象和性质,考查了三角函数周期公式的应用,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网