题目内容

设f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零实数,若f(2004)=1,则f(2005)=
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据解析式得出:msin(2004π+α1)+ncos(2004π+α2)=1,msin(α1)+ncos(α2)=1,
整体求解即可f(2005)=msin(2005π+α1)+ncos(2005π+α2)=-msin(2004π+α1)-ncos(2004π+α2).
解答: 解:∵f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零实数,
∴若f(2004)=1,即得出msin(2004π+α1)+ncos(2004π+α2)=1,
msin(α1)+ncos(α2)=1,
f(2005)=msin(2005π+α1)+ncos(2005π+α2)=-msin(2004π+α1)-ncos(2004π+α2)=-1,
故答案为:-1
点评:本题考查了函数的性质,整体运用的思想,难度不大,运用公式求解即可,属于中档题,熟练运用公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网