题目内容

9.函数f(θ)=12cosθ+5sinθ(θ∈[0,2π))在θ=θ0处取得最小值,则点M(cosθ0,sinθ0)关于坐标原点对称的点坐标是($\frac{12}{13}$,$\frac{5}{13}$).

分析 由辅助角公式可得f(θ)=13sin(θ+φ),其中sinφ=$\frac{12}{13}$,cosφ=$\frac{5}{13}$,由三角函数的最值和诱导公式以及对称性可得.

解答 解:∵f(θ)=12cosθ+5sinθ=13($\frac{12}{13}$cosθ+$\frac{5}{13}$sinθ)
=13sin(θ+φ),其中sinφ=$\frac{12}{13}$,cosφ=$\frac{5}{13}$,
∴当θ+φ=$\frac{3π}{2}$时,函数f(θ)取最小值-13,
此时θ=θ0=$\frac{3π}{2}$-φ,故cosθ0=cos($\frac{3π}{2}$-φ)=-sinφ=-$\frac{12}{13}$,
sinθ0=sin($\frac{3π}{2}$-φ)=-cosφ=-$\frac{5}{13}$,即M(-$\frac{12}{13}$,-$\frac{5}{13}$),
由对称性可得所求点的坐标为($\frac{12}{13}$,$\frac{5}{13}$),
故答案为:($\frac{12}{13}$,$\frac{5}{13}$).

点评 本题考查两角和与差的正弦函数,涉及辅助角公式和诱导公式,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网