题目内容
11.(1)若△BCD的面积为$\frac{{\sqrt{3}}}{3}$,求线段CD的长;
(2)若$CD=\sqrt{3}$,求角A的值.
分析 (1)先根据三角形的内角A,B,C成等差数列,求出B的度数,再根据三角的面积公式求出BD,再根据余弦定理即可求出,
(2)若$CD=\sqrt{3}$,求出∠BDC,即可求角A的值.
解答 解:(1)三角形的内角A,B,C成等差数列,
则有2B=A+C.又A+B+C=180°,
∴B=60°,
∵△BCD的面积为$\frac{{\sqrt{3}}}{3}$,a=2
∴$\frac{1}{2}$BD•BC•sin60°=$\frac{{\sqrt{3}}}{3}$,
∴BD=$\frac{2}{3}$,
由余弦定理,CD2=BD2+BC2+2BD•BC•cos60°=$\frac{28}{9}$,
∴CD=$\frac{2\sqrt{7}}{3}$;
(2)△BCD中,$CD=\sqrt{3}$,$\frac{\sqrt{3}}{sin60°}=\frac{2}{sin∠BDC}$,∴sin∠BDC=1,
∴∠BDC=90°,∴CD⊥AB,
∵∠A=∠B=$\frac{π}{4}$.
点评 本题主要考查余弦定理三角形的面积公式以及等差数列的性质,属于中档题.
练习册系列答案
相关题目
1.
元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,问一开始输入的x=( )
| A. | $\frac{3}{4}$ | B. | $\frac{7}{8}$ | C. | $\frac{15}{16}$ | D. | $\frac{31}{32}$ |
19.观察:$\sqrt{6}$+$\sqrt{15}$<2$\sqrt{11}$,$\sqrt{5.5}$+$\sqrt{15.5}$<2$\sqrt{11}$,$\sqrt{4-\sqrt{2}}$+$\sqrt{17+\sqrt{2}}$<2$\sqrt{11}$,…,对于任意的正实数a,b,使$\sqrt{a}$+$\sqrt{b}$<2$\sqrt{11}$成立的一个条件可以是( )
| A. | a+b=22 | B. | a+b=21 | C. | ab=20 | D. | ab=21 |
6.
如图,已知正方体ABCD-A'B'C'D'的外接球的体积为$\frac{{\sqrt{3}}}{2}π$,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )
| A. | $\frac{9}{2}+\frac{{\sqrt{3}}}{2}$ | B. | $3+\sqrt{3}$或$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$ | C. | $2+\sqrt{3}$ | D. | $\frac{9}{2}+\frac{{\sqrt{3}}}{2}$或$2+\sqrt{3}$ |
20.已知曲线f(x)=ax-1+1(a>1)恒过定点A,点A恰在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线C的离心率为( )
| A. | $\sqrt{5}$ | B. | 5 | C. | 2 | D. | 2$\sqrt{2}$ |
1.
某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(Ⅰ)求图中a的值;
(Ⅱ)估计该次考试的平均分$\overline{x}$(同一组中的数据用该组的区间中点值代表);
(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(Ⅰ)求图中a的值;
(Ⅱ)估计该次考试的平均分$\overline{x}$(同一组中的数据用该组的区间中点值代表);
(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
| 晋级成功 | 晋级失败 | 合计 | |
| 男 | 16 | ||
| 女 | 50 | ||
| 合计 |
| P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |