题目内容
20.在如下程序框图中,已知f0(x)=sinx,则输出的结果是( )| A. | sinx | B. | cosx | C. | -sinx | D. | -cosx |
分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算函数及导函数的函数值,模拟程序的运行,分析程序运行过程中函数值呈现周期性变化,求出周期T后,不难得到输出结果.
解答 解:∵f0(x)=sinx,
f1(x)=cosx,
f2(x)=-sinx,
f3(x)=-cosx,
f4(x)=sinx,
f5(x)=cosx.
∴题目中的函数为周期函数,且周期T=4,且2016=504×4,
∴观察规律可得:f2016(x)=f1(x)=sinx.
故选:A.
点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.
练习册系列答案
相关题目
15.已知F2,F1是双曲线 $\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆内,则双曲线的离心率e为( )
| A. | ($\sqrt{3}$,3) | B. | (3,+∞) | C. | ($\sqrt{2}$,2) | D. | (2,+∞) |
10.在Rt△ABC中,∠A为直角,且AB=3,BC=5,若在三角形ABC内任取一点,则该点到三个定点A,B,C的距离不小于1的概率是( )
| A. | $\frac{π}{6}$ | B. | 1-$\frac{π}{6}$ | C. | $\frac{π}{12}$ | D. | 1-$\frac{π}{12}$ |