题目内容
16.已知不等式mx2+nx-$\frac{1}{m}$<0的解集为{x|x<-$\frac{1}{2}$或x>2},则m-n=( )| A. | $\frac{1}{2}$ | B. | -$\frac{5}{2}$ | C. | $\frac{5}{2}$ | D. | -$\frac{1}{2}$ |
分析 根据一元二次不等式的解集与一元二次方程之间的关系进行求解即可.
解答 解:∵mx2+nx-$\frac{1}{m}$<0的解集为{x|x<-$\frac{1}{2}$或x>2},
∴-$\frac{1}{2}$和2是一元二次方程mx2+nx-$\frac{1}{m}$=0的两个根,且m<0,
∴-$\frac{1}{2}$+2=-$\frac{n}{m}$,-$\frac{1}{2}$×2=-$\frac{1}{{m}^{2}}$,
∴m=-1,n=$\frac{3}{2}$,
∴m-n=-1-$\frac{3}{2}$=-$\frac{5}{2}$,
故选:B.
点评 本题主要考查一元二次不等式的性质,根据一元二次不等式与一元二次方程之间的关系转化为根与系数之间的关系是解决本题的关键.
练习册系列答案
相关题目
6.下列函数中,在区间(0,+∞)上为增函数的是( )
| A. | $y=\frac{{\sqrt{x}}}{2}$ | B. | y=(x-1)2 | C. | y=2-x | D. | y=log0.5x |
11.已知圆C的标准方程为x2+y2=1,直线l的方程为y=k(x-2),若直线l和圆C有公共点,则实数k的取值范围是 ( )
| A. | $[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$ | B. | $[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$ | C. | $[-\frac{1}{2},\frac{1}{2}]$ | D. | [-1,1] |
1.已知条件p:|x+1|>2,条件q:|x|>a,且¬p是¬q的必要不充分条件,则实数a的取值范围是( )
| A. | 0≤a≤1 | B. | 1≤a≤3 | C. | a≤1 | D. | a≥3 |
8.已知平面向量$\overrightarrow{a}$=(2,1),$\overrightarrow{c}$=(1,-1),若向量$\overrightarrow{b}$满足($\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{c}$,($\overrightarrow{a}$+$\overrightarrow{c}$)⊥$\overrightarrow{b}$,则向量$\overrightarrow{b}$=( )
| A. | (2,1) | B. | (1,2) | C. | (3,0) | D. | (0,3) |
5.已知tanα=-$\frac{3}{4}$,且tan(α+β)=1,则tanβ的值为( )
| A. | -7 | B. | 7 | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |