题目内容

11.已知圆C的标准方程为x2+y2=1,直线l的方程为y=k(x-2),若直线l和圆C有公共点,则实数k的取值范围是  (  )
A.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$B.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$C.$[-\frac{1}{2},\frac{1}{2}]$D.[-1,1]

分析 由题意利用点到直线的距离小于等于半径,求出k的范围即可.

解答 解:由题意可知圆的圆心坐标为(0,0),半径为1,
因为直线l和圆C有公共点,所以$\frac{|2k|}{\sqrt{{k}^{2}+1}}$≤1,
解得-$\frac{\sqrt{3}}{3}$≤k≤$\frac{\sqrt{3}}{3}$.
故选:B.

点评 本题是中档题,考查直线与圆的位置关系,考查计算能力,转化思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网