题目内容

12.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,则a2011的值为(  )
A.$\frac{6}{7}$B.$\frac{5}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

分析 利用数列递推关系可得:an+3=an即可得出.

解答 解:数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,a1=$\frac{6}{7}$,
∴a2=2a1-1=$2×\frac{6}{7}$-1=$\frac{5}{7}$,a3=2a2-1=$\frac{3}{7}$,a4=2×$\frac{3}{7}$=$\frac{6}{7}$,…,
∴an+3=an
∴a2011=a670×3+1=a1=$\frac{6}{7}$.
故选:A.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网