题目内容
已知数列{an}满足a1=
,(1-an)an+1=
.
(1)求证:数列{
}为等差数列;
(2)求证:
+
+…+
<n+
.
| 1 |
| 4 |
| 1 |
| 4 |
(1)求证:数列{
| 1 | ||
an-
|
(2)求证:
| a2 |
| a1 |
| a3 |
| a2 |
| an+1 |
| an |
| 3 |
| 4 |
考点:数列与不等式的综合,等差关系的确定
专题:等差数列与等比数列
分析:(1)利用得出数列的定义证明即可,令bn=
∴an=
+
,则代入(1-an)an+1=
,化简可得bn+1-bn=-2,即可得证;
(2)由(1)可求得
=
•
=
=1+
=1+
(
-
),利用裂项求和即可得出结论.
| 1 | ||
an-
|
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 4 |
(2)由(1)可求得
| an+1 |
| an |
| n+1 |
| 2(n+2) |
| 2(n+1) |
| n |
| (n+1)2 |
| n(n+2) |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:(1)令bn=
∴an=
+
,
∵(1-an)an+1=
.
∴[1-(
+
)](
+
)=
,
∴bn+1-bn=-2,又b1=
=-4,
∴数列{bn}是首项是-4,公差为-2的等差数列,即数列{
}为等差数列;
(2)由(1)知bn=-4-2(n-1)=-2n-2,
∴an=
+
=-
+
=
,
∴
=
•
=
=1+
=1+
(
-
),
∴
+
+…+
=n+
(1-
+
-
+…+
-
)=n+
(1+
-
-
)<n+
.
| 1 | ||
an-
|
| 1 |
| bn |
| 1 |
| 2 |
∵(1-an)an+1=
| 1 |
| 4 |
∴[1-(
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| bn+1 |
| 1 |
| 2 |
| 1 |
| 4 |
∴bn+1-bn=-2,又b1=
| 1 | ||||
|
∴数列{bn}是首项是-4,公差为-2的等差数列,即数列{
| 1 | ||
an-
|
(2)由(1)知bn=-4-2(n-1)=-2n-2,
∴an=
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2(n+1) |
| 1 |
| 2 |
| n |
| 2(n+1) |
∴
| an+1 |
| an |
| n+1 |
| 2(n+2) |
| 2(n+1) |
| n |
| (n+1)2 |
| n(n+2) |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| a2 |
| a1 |
| a3 |
| a2 |
| an+1 |
| an |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
点评:本题主要考查等差数列的证明及裂项相消法求数列的和等知识,注意式子的合理变形,是解决问题的关键,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=|x2+2x-3|,若关于x的方程f2(x)-(a+2)f(x)+a2-2a=0有5个不等实根,则实数a值是( )
| A、2 | B、4 | C、2或4 | D、不确定的 |