题目内容

已知数列{an}满足a1=
1
4
,(1-an)an+1=
1
4

(1)求证:数列{
1
an-
1
2
}为等差数列;
(2)求证:
a2
a1
+
a3
a2
+…+
an+1
an
<n+
3
4
考点:数列与不等式的综合,等差关系的确定
专题:等差数列与等比数列
分析:(1)利用得出数列的定义证明即可,令bn=
1
an-
1
2
∴an=
1
bn
+
1
2
,则代入(1-an)an+1=
1
4
,化简可得bn+1-bn=-2,即可得证;
(2)由(1)可求得
an+1
an
=
n+1
2(n+2)
2(n+1)
n
=
(n+1)2
n(n+2)
=1+
1
n(n+2)
=1+
1
2
1
n
-
1
n+2
),利用裂项求和即可得出结论.
解答: 解:(1)令bn=
1
an-
1
2
∴an=
1
bn
+
1
2

∵(1-an)an+1=
1
4

∴[1-(
1
bn
+
1
2
)](
1
bn+1
+
1
2
)=
1
4

∴bn+1-bn=-2,又b1=
1
1
4
-
1
2
=-4,
∴数列{bn}是首项是-4,公差为-2的等差数列,即数列{
1
an-
1
2
}为等差数列;
(2)由(1)知bn=-4-2(n-1)=-2n-2,
∴an=
1
bn
+
1
2
=-
1
2(n+1)
+
1
2
=
n
2(n+1)

an+1
an
=
n+1
2(n+2)
2(n+1)
n
=
(n+1)2
n(n+2)
=1+
1
n(n+2)
=1+
1
2
1
n
-
1
n+2
),
a2
a1
+
a3
a2
+…+
an+1
an
=n+
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)=n+
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)<n+
3
4
点评:本题主要考查等差数列的证明及裂项相消法求数列的和等知识,注意式子的合理变形,是解决问题的关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网