ÌâÄ¿ÄÚÈÝ
ÉèÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬¹ýAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚQµã£¬ÇÒ2
+
=
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©Èô¹ýA¡¢Q¡¢F2ÈýµãµÄԲǡºÃÓëÖ±Ïßx-
y-3=0ÏàÇУ¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ó£©¹ýF2µÄÖ±ÏßlÓ루¢ò£©ÖÐÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬Ôò¡÷F1MNµÄÄÚÇÐÔ²µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°´ËʱµÄÖ±Ïß·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| x2 |
| a2 |
| y2 |
| b2 |
| F1F2 |
| F2Q |
| 0 |
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©Èô¹ýA¡¢Q¡¢F2ÈýµãµÄԲǡºÃÓëÖ±Ïßx-
| 3 |
£¨¢ó£©¹ýF2µÄÖ±ÏßlÓ루¢ò£©ÖÐÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬Ôò¡÷F1MNµÄÄÚÇÐÔ²µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°´ËʱµÄÖ±Ïß·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,ÍÖÔ²µÄ±ê×¼·½³Ì
רÌ⣺Բ׶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©ÀûÓÃA£¨0£¬b£©£¬F1ΪQF2µÄÖе㣮ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÔòQ£¨-3c£¬0£©£¬
=(-3c£¬-b)ͨ¹ý
¡Í
£¬ÁгöcµÄ·½³Ì£¬Çó³öc£¬¼´¿ÉµÃµ½ÀëÐÄÂÊ£®
£¨¢ò£©ÀûÓÃRt¡÷QAF2Íâ½ÓÔ²ÓëÖ±ÏßÏàÇУ¬ÍƳöd=r£¬Çó³öc=1£¬È»ºó¾À´ía£¬b£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£®
£¨¢ó£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÀûÓÃÉè¡÷F1MNµÄÄÚÇÐÔ²µÄ°ë¾¶ÎªR£¬µÃµ½¡÷F1MNµÄÖܳ¤Îª4a=8£¬±íʾ³ö¡÷F1MNÄÚÇÐÔ²µÄÃæ»ý±í´ïʽ£¬ËµÃ÷R×î´ó£¬S¡÷F1MNÒ²×î´ó£®¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÓëÍÖÔ²ÁªÁ¢£¬Í¨¹ýΤ´ï¶¨Àí
»¯¼òS¡÷F1MN=
£¬ÀûÓûù±¾²»µÈʽÇó³ö×îÖµ¼´¿É£®
| AQ |
| AQ |
| AF2 |
£¨¢ò£©ÀûÓÃRt¡÷QAF2Íâ½ÓÔ²ÓëÖ±ÏßÏàÇУ¬ÍƳöd=r£¬Çó³öc=1£¬È»ºó¾À´ía£¬b£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£®
£¨¢ó£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÀûÓÃÉè¡÷F1MNµÄÄÚÇÐÔ²µÄ°ë¾¶ÎªR£¬µÃµ½¡÷F1MNµÄÖܳ¤Îª4a=8£¬±íʾ³ö¡÷F1MNÄÚÇÐÔ²µÄÃæ»ý±í´ïʽ£¬ËµÃ÷R×î´ó£¬S¡÷F1MNÒ²×î´ó£®¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÓëÍÖÔ²ÁªÁ¢£¬Í¨¹ýΤ´ï¶¨Àí
»¯¼òS¡÷F1MN=
12
| ||
| 3m2+4 |
½â´ð£º
½â£º£¨¢ñ£©ÓÉÌâA£¨0£¬b£©£¬F1ΪQF2µÄÖе㣮
ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÔòQ£¨-3c£¬0£©
=(-3c£¬-b)£¬
=(c£¬-b)
ÓÉÌâ
¡Í
£¬¼´
•
=-3c2+b2=0£¬¡à-3c2+£¨a2-c2£©=0¼´a2=4c2¡àe=
=
£¨¢ò£©ÓÉÌâRt¡÷QAF2Íâ½ÓÔ²Ô²ÐÄΪб±ßQF2µÄÖеãF1£¨-c£¬0£©£¬°ë¾¶r=2c£¬¡ßÓÉÌâRt¡÷QAF2Íâ½ÓÔ²ÓëÖ±Ïßx-
y-3=0ÏàÇСàd=r£¬¼´
=2c£¬¼´c+3=4c¡àc=1£¬a=2c=2£¬b=
¹ÊËùÇóµÄÍÖÔ²CµÄ·½³ÌΪ
+
=1
£¨¢ó£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉÌây1£¬y2ÒìºÅ£®
Éè¡÷F1MNµÄÄÚÇÐÔ²µÄ°ë¾¶ÎªR£¬Ôò¡÷F1MNµÄÖܳ¤Îª4a=8£¬S¡÷F1MN=
(|MN|+|F1M|+|F1N|)R=4R£¬
Òò´ËҪʹ¡÷F1MNÄÚÇÐÔ²µÄÃæ»ý×î´ó£¬Ö»ÐèR×î´ó£¬´ËʱS¡÷F1MNÒ²×î´ó£®S¡÷F1MN=
|F1F2|•|y1-y2|=|y1-y2|£¬
ÓÉÌâÖª£¬Ö±ÏßlµÄбÂʲ»ÎªÁ㣬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬
ÓÉ
µÃ£¨3m2+4£©y2+6my-9=0£¬
ÓÉΤ´ï¶¨ÀíµÃy1+y2=
£¬y1y2=
£¬£¨¡÷£¾0⇒m¡ÊR£©S¡÷F1MN=|y1-y2|=
=
Áît=
£¬Ôòt¡Ý1S¡÷F1MN=
=
£¨t¡Ý1£©£¬
µ±t=1ʱS¡÷F1MN=4RÓÐ×î´óÖµ3£®´Ëʱ£¬m=0£¬Rmax=
¹Ê¡÷F1MNµÄÄÚÇÐÔ²µÄÃæ»ýµÄ×î´óֵΪ
£¬´ËʱֱÏßlµÄ·½³ÌΪx=1
ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÔòQ£¨-3c£¬0£©
| AQ |
| AF2 |
ÓÉÌâ
| AQ |
| AF2 |
| AQ |
| AF2 |
| c |
| a |
| 1 |
| 2 |
£¨¢ò£©ÓÉÌâRt¡÷QAF2Íâ½ÓÔ²Ô²ÐÄΪб±ßQF2µÄÖеãF1£¨-c£¬0£©£¬°ë¾¶r=2c£¬¡ßÓÉÌâRt¡÷QAF2Íâ½ÓÔ²ÓëÖ±Ïßx-
| 3 |
| |-c-3| |
| 2 |
| 3 |
| x2 |
| 4 |
| y2 |
| 3 |
£¨¢ó£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉÌây1£¬y2ÒìºÅ£®
Éè¡÷F1MNµÄÄÚÇÐÔ²µÄ°ë¾¶ÎªR£¬Ôò¡÷F1MNµÄÖܳ¤Îª4a=8£¬S¡÷F1MN=
| 1 |
| 2 |
Òò´ËҪʹ¡÷F1MNÄÚÇÐÔ²µÄÃæ»ý×î´ó£¬Ö»ÐèR×î´ó£¬´ËʱS¡÷F1MNÒ²×î´ó£®S¡÷F1MN=
| 1 |
| 2 |
ÓÉÌâÖª£¬Ö±ÏßlµÄбÂʲ»ÎªÁ㣬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬
ÓÉ
|
ÓÉΤ´ï¶¨ÀíµÃy1+y2=
| -6m |
| 3m2+4 |
| -9 |
| 3m2+4 |
| (y1+y2)2-4y1y2 |
12
| ||
| 3m2+4 |
Áît=
| m2+1 |
| 12t |
| 3t2+1 |
| 12 | ||
3t+
|
µ±t=1ʱS¡÷F1MN=4RÓÐ×î´óÖµ3£®´Ëʱ£¬m=0£¬Rmax=
| 3 |
| 4 |
¹Ê¡÷F1MNµÄÄÚÇÐÔ²µÄÃæ»ýµÄ×î´óֵΪ
| 9¦Ð |
| 16 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ»ù±¾ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©=
£¬º¯Êýg£¨x£©=f£¨x£©-xÓÐÈý¸ö²»Í¬µÄÁãµã£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
|
A¡¢-
| ||
B¡¢a£¼-
| ||
C¡¢a£¾-
| ||
D¡¢-
|