ÌâÄ¿ÄÚÈÝ
13£®ÔÚÖ±½Ç×ø±êϵxOy£¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÆäÖÐF2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬µãMΪC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|MF2|=$\frac{5}{3}$£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©Èô¹ýµãD£¨4£¬0£©µÄÖ±ÏßlÓëC1½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒAÔÚDBÖ®¼ä£¬ÊÔÇó¡÷AODÓë¡÷BODÃæ»ý±ÈÖµµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©Çó³öMµÄ×ø±ê£¬´úÈëÍÖÔ²·½³ÌÁз½³Ì×éµÃ³öa£¬b£»
£¨2£©Éèl·½³Ì£ºx=my+4£¬ÁªÁ¢·½³Ì×飬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃ³öA£¬B×Ý×ø±êµÄ¹ØÏµ£¬Éè¦Ë=$\frac{{S}_{¡÷AOD}}{{S}_{¡÷BOD}}$=$\frac{{y}_{1}}{{y}_{2}}$£¬Ôòy1=y2¦Ë£¬´úÈë¸ùÓëϵÊýµÄ¹ØÏµµÃ³öm2¹ØÓڦ˵ĺ¯Êý£¬¸ù¾Ým2µÄ·¶Î§¼´¿ÉµÃ³ö¦ËµÄ·¶Î§£®
½â´ð
½â£º£¨1£©ÒÀÌâÒâÖªF2£¨1£¬0£©£¬¡àF1£¨-1£¬0£©£¬
ÉèM£¨x1£¬y1£©£¬Ôò|MF2|=x1+1=$\frac{5}{3}$£¬¼´x1=$\frac{2}{3}$£¬
¡ày1=2$\sqrt{{x}_{1}}$=$\frac{2\sqrt{6}}{3}$£¬¼´M£¨$\frac{2}{3}$£¬$\frac{2\sqrt{6}}{3}$£©£¬
¡à$\left\{\begin{array}{l}{{a}^{2}-{b}^{2}=1}\\{\frac{£¨\frac{2}{3}£©^{2}}{{a}^{2}}+\frac{£¨\frac{2\sqrt{6}}{3}£©^{2}}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃa2=4£¬b2=3£¬???
¹ÊÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®
£¨2£©ÒÀÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèlµÄ·½³ÌΪx=my+4£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{x=my+4}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨3m2+4£©y2+24my+36=0£¬
¡à¡÷=576m2-144£¨3m2+4£©£¾0£¬½âµÃm2£¾4£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòy1+y2=-$\frac{24m}{3{m}^{2}+4}$£¬y1y2=$\frac{36}{3{m}^{2}+4}$£®
Éè¦Ë=$\frac{{S}_{¡÷AOD}}{{S}_{¡÷BOD}}$=$\frac{{y}_{1}}{{y}_{2}}$£¬Ôòy1=y2¦Ë£¬ÇÒ0£¼¦Ë£¼1£®
°Ñy1=y2¦Ë´úÈëy1+y2=-$\frac{24m}{3{m}^{2}+4}$£¬y1y2=$\frac{36}{3{m}^{2}+4}$¿ÉµÃ£º
$\left\{\begin{array}{l}{£¨¦Ë+1£©{y}_{2}=-\frac{24m}{3{m}^{2}+4}}\\{{¦Ë{y}_{2}}^{2}=\frac{36}{3{m}^{2}+4}}\end{array}\right.$£¬ÏûÈ¥y2µÃ$\frac{£¨¦Ë+1£©^{2}}{¦Ë}$=$\frac{16{m}^{2}}{3{m}^{2}+4}$£¬
¼´m2=$\frac{4£¨¦Ë+1£©^{2}}{10¦Ë-3{¦Ë}^{2}-3}$£¬
¡à$\frac{4£¨¦Ë+1£©^{2}}{10¦Ë-3{¦Ë}^{2}-3}$£¾4£¬½âµÃ$\frac{1}{3}£¼¦Ë£¼1$»ò1£¼¦Ë£¼3£¨Éᣩ£®
¡à¡÷AODÓë¡÷BODÃæ»ý±ÈÖµµÄȡֵ·¶Î§ÊÇ£¨$\frac{1}{3}$£¬1£©£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
| A£® | 4 | B£® | 6 | C£® | 8 | D£® | 10 |
| A£® | y=-3x+5 | B£® | y=3x-1 | C£® | y=3x+5 | D£® | y=2x |
| A£® | $A_{100-n}^{80}$ | B£® | $A_{100-n}^{20-n}$ | C£® | $A_{100-n}^{81}$ | D£® | $A_{20-n}^{81}$ |
| ×éºÅ | ÄêÁä | ·Ã̸ÈËÊý | Ô¸ÒâʹÓà |
| 1 | [18£¬28£© | 4 | 4 |
| 2 | [28£¬38£© | 9 | 9 |
| 3 | [38£¬48£© | 16 | 15 |
| 4 | [48£¬58£© | 15 | 12 |
| 5 | [58£¬68£© | 6 | 2 |
£¨¢ò£©Èô´ÓµÚ5×éµÄ±»µ÷²éÕß·Ã̸ÈËÖÐËæ»úѡȡ2È˽øÐÐ×·×Ùµ÷²é£¬Çó2ÈËÖÐÖÁÉÙÓÐ1ÈËÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײ͵ĸÅÂÊ£®
£¨¢ó£©°´ÒÔÉÏͳ¼ÆÊý¾ÝÌîдÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÒÔ48ËêΪ·Ö½çµã£¬ÄÜ·ñÔÚ·¸´íÎó²»³¬¹ý1%µÄǰÌáÏÂÈÏΪ£¬ÊÇ·ñÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±ÌײÍÓëÈ˵ÄÄêÁäÓйأ¿
| ÄêÁä²»µÍÓÚ48ËêµÄÈËÊý | ÄêÁäµÍÓÚ48ËêµÄÈËÊý | ºÏ¼Æ | |
| Ô¸ÒâʹÓõÄÈËÊý | |||
| ²»Ô¸ÒâʹÓõÄÈËÊý | |||
| ºÏ¼Æ |
| P£¨k2¡Ýk0£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A£® | 12¦Ðcm2 | B£® | 6 cm2 | C£® | 6¦Ðcm2 | D£® | 4 cm2 |