题目内容

13.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π) 的图象如图所示,则ω=$\frac{3}{2}$;φ=$-\frac{π}{2}$.

分析 根据图象信息直接求出ω 和φ即可.

解答 解:从图象信息可知:周期T=$4×(\frac{2π}{3}-\frac{π}{3})$=$\frac{4π}{3}$,
∴ω=$\frac{2π}{T}$=$\frac{3}{2}$.
图象过坐标($\frac{π}{3}$,0),即sin($\frac{3}{2}×\frac{π}{3}$+φ)=0,
∴$\frac{π}{2}+$φ=kπ,k∈Z.
∵|φ|<π,
∴φ=$-\frac{π}{2}$.
故答案为:$\frac{3}{2}$,$-\frac{π}{2}$

点评 本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网