题目内容
20.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+x+1,x≥0}\\{2x+1,x<0}\end{array}}\right.$,若f(sinα+sinβ+sinr-1)=-1,f(cosα+cosβ+cosr+1)=3,则cos(α-β)+cos(β-r)的值为( )| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
分析 根据题意,先判定x≥0时f(x)≥1,x<0时f(x)<1,结合条件代入解析式列出两个式子,利用平方关系化简后,由两角差的余弦函数求出cos(α-β)、cos(β-r)的值,可得答案.
解答 解:由题意知,$f(x)=\left\{\begin{array}{l}{{x}^{2}+x+1,x≥0}\\{2x+1,x<0}\end{array}\right.$,
∴x≥0时,x2+x+1≥1,x<0时,2x+1<1;
∵f(sinα+sinβ+sinr-1)=-1,f(cosα+cosβ+cosr+1)=3,
∴2(sinα+sinβ+sinr-1)+1=-1,即sinα+sinβ=-sinr; ①
(cosα+cosβ+sinr+1)2+(cosα+cosβ+cosr+1)+1=3,
得cosα+cosβ+cosr+1=1,即cosα+cosβ=-cosr; ②
①2+②2得,2+2sinαsinβ+2cosαcosβ=1,
∴cosαcosβ+sinαsinβ=$-\frac{1}{2}$,即cos(α-β)=$-\frac{1}{2}$,
同理可求得,cos(β-r)=$-\frac{1}{2}$,
∴cos(α-β)+cos(β-r)=-1,
故选:C.
点评 本题考查了分段函数的应用,两角差的余弦函数,以及平方关系的应用,考查化简、变形能力.
练习册系列答案
相关题目
13.如果角α的终边经过点$({-\frac{{\sqrt{3}}}{2},\frac{1}{2}})$,那么tanα的值是( )
| A. | $-\sqrt{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
12.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织得快,而且每天增加的数量相同,已知第一天织布10尺,一个月(按30天计算)总共织布6尺,问每天增加的数量为多少尺?该问题的答案为( )
| A. | $\frac{8}{29}$尺 | B. | $\frac{16}{29}$尺 | C. | $\frac{32}{29}$尺 | D. | $\frac{1}{2}$尺 |