ÌâÄ¿ÄÚÈÝ

8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦Á}\\{y=bsin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬µãM£¨$\frac{\sqrt{6}}{2}$£¬$\frac{1}{2}$£©ÔÚÇúÏßCÉÏ£¬ÇÒ¶ÔÓ¦µÄ²ÎÊý¦Á=$\frac{¦Ð}{6}$£®
£¨1£©ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©¹ýµãP£¨0£¬2£©×÷бÂÊΪ$\sqrt{3}$µÄÖ±Ïßl£¬½»ÇúÏßCÓÚA¡¢BÁ½µã£¬ÇóÖ±ÏßlµÄ²ÎÊý·½³Ì¼°|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²²ÎÊý·½³Ì¿ÉµÃ£º$\frac{\sqrt{6}}{2}$=acos$\frac{¦Ð}{6}$£¬$\frac{1}{2}$=bsin$\frac{¦Ð}{6}$£¬½âµÃa£¬b£®¿ÉµÃÇúÏßCµÄ²ÎÊý·½³Ì£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬½ø¶ø¿É»¯Îª¼«×ø±ê·½³Ì£®
£¨2£©ÓÉÒÑÖª¿ÉµÃÖ±ÏßlµÄ²ÎÊý·½³Ì£¬´úÈëÇúÏßCµÄ·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ£º|PA|+|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì£º$\left\{\begin{array}{l}{x=acos¦Á}\\{y=bsin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
¿ÉµÃ£º$\frac{\sqrt{6}}{2}$=acos$\frac{¦Ð}{6}$£¬$\frac{1}{2}$=bsin$\frac{¦Ð}{6}$£¬
½âµÃa=$\sqrt{2}$£¬b=1£®
¡àÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{2}cos¦Á\\ y=sin¦Á\end{array}\right.$£¬ÆäÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬
Æä¼«×ø±ê·½³ÌΪ£º¦Ñ2cos2¦È+2¦Ñ2sin2¦È=2£®
£¨2£©¡ßÖ±ÏßlµãP£¨0£¬2£©ÇÒбÂÊΪ$\sqrt{3}$£¬
¹ÊÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{\sqrt{3}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
´úÈëÇúÏßCµÄ·½³Ì¿ÉµÃ£º$\frac{7}{8}$t2+£¨2$\sqrt{3}+\frac{1}{2}$£©t+$\frac{7}{2}$=0£¬
¡à|PA|+|PB|=|t1+t2|=$\frac{16\sqrt{3}+4}{7}$

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢ÍÖÔ²µÄ²ÎÊýÖ±½Ç·½³Ì¼«×ø±ê·½³ÌµÄ»¥»¯¼°ÆäÓ¦Óá¢Ö±ÏߵIJÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø