题目内容

19.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据
患流感未患流感
服用药218
未服用药812
根据表中数据,通过计算统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并参考以下临界数据:
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.828
若由此认为“该药物有效”,则该结论出错的概率不超过(  )
A.0.05B.0.025C.0.01D.0.005

分析 根据表中数据,计算观测值K2,参考临界值即可得出结论;

解答 解:根据表中数据,计算观测值为
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{40{×(2×12-8×18)}^{2}}{10×30×20×20}$=4.8>3.84,
参考临界值得:认为“该药物有效”,该结论出错的概率不超过0.05.
故选:A.

点评 本题考查了独立性检验的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网