题目内容
9.在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为$(3\sqrt{2},\frac{π}{4})$,圆C的参数方程为$\left\{{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}}\right.$(α为参数).(1)直线l过M且与圆C相切,求直线l的极坐标方程;
(2)过点P(0,m)且斜率为$\sqrt{3}$的直线l'与圆C交于A,B两点,若|PA|•|PB|=6,求实数m的值.
分析 (1)根据参数方程和极坐标方程和普通方程的关系进行转化即可;
(2)将直线方程代入圆的方程得到关于t的二次方程,根据判别式求出关于m的方程,解出即可.
解答 解:(1)M的直角坐标为(3,3),
圆C的直角坐标方程为(x-1)2+y2=4,
设直线l:y-3=k(x-3),即l:kx-y-3k+3=0,
因为直线l与圆C相切,所以$\frac{|2k-3|}{{\sqrt{{k^2}+1}}}=2$,解得$k=\frac{5}{12}$,
此时直线l的方程为5x-12y+21=0,
若直线l的斜率不存在时,直线l的方程为x=3,
所以直线l的极坐标方程为5ρcosθ-12ρsinθ+21=0或ρcosθ=3.
(2)将直线l'的参数方程$\left\{{\begin{array}{l}{x=\frac{1}{2}t}\\{y=m+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),
代入圆C的方程(x-1)2+y2=4,
得:t2+($\sqrt{3}$m-1)t+m2-3=0,
$△={(\sqrt{3}m-1)^2}-4({m^2}-3)$=$-{m^2}-2\sqrt{3}m+13>0$,
设PA=t1,PB=t2,则${t_1}•{t_2}={m^2}-3$,
因为|PA|•|PB|=6,所以$|{t_1}•{t_2}|=|{m^2}-3|=6$,
所以m2-3=±6,解得m=±3,
由△>0知,所求m的值为-3.
点评 本题考查了参数方程和极坐标方程以及普通方程的关系,考查二次函数的性质,是一道综合题.
练习册系列答案
相关题目
20.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数g(x)=Acos(φx+ω)图象的一个对称中心可能为( )
| A. | $(-\frac{5}{2},0)$ | B. | $(\frac{1}{6},0)$ | C. | $(-\frac{1}{2},0)$ | D. | $(-\frac{11}{6},0)$ |
14.若复数z=$\frac{{{i^{2017}}}}{1-i}$(i是虚数单位),则复数z在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
18.三棱锥P-ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是$\frac{\sqrt{6}}{2}$,则三棱锥P-ABC的外接球的表面积是( )
| A. | 2π | B. | 4π | C. | 8π | D. | 16π |
19.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据
根据表中数据,通过计算统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并参考以下临界数据:
若由此认为“该药物有效”,则该结论出错的概率不超过( )
| 患流感 | 未患流感 | |
| 服用药 | 2 | 18 |
| 未服用药 | 8 | 12 |
| P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 0.05 | B. | 0.025 | C. | 0.01 | D. | 0.005 |