题目内容
12.用随机事件发生的频率去估算这个事件发生的概率.下列结论正确的是( )| A. | 事件A发生的概率P(A)是0<P(A)<1 | |
| B. | 事件A发生的概率P(A)=0.999,则事件A是必然事件 | |
| C. | 用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76% | |
| D. | 某奖券中奖率为0.5,则某人购买此券10张,一定有5张中奖 |
分析 根据概率的定义分别判断即可.
解答 解:对于A,P(A)可以是0或1,故A错误;
对于B,事件A是随机事件,故B错误;
对于C,根据概率的定义判断正确;
对于D,是随机事件,D错误;
故选:C.
点评 本题考查概率的概念,解题时要熟练掌握概率的意义,本题是一道基础题.
练习册系列答案
相关题目
18.三棱锥P-ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是$\frac{\sqrt{6}}{2}$,则三棱锥P-ABC的外接球的表面积是( )
| A. | 2π | B. | 4π | C. | 8π | D. | 16π |
19.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据
根据表中数据,通过计算统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并参考以下临界数据:
若由此认为“该药物有效”,则该结论出错的概率不超过( )
| 患流感 | 未患流感 | |
| 服用药 | 2 | 18 |
| 未服用药 | 8 | 12 |
| P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 0.05 | B. | 0.025 | C. | 0.01 | D. | 0.005 |
16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)点有顶点A,O为坐标原点,以A为圆心与双曲线C的一条渐近线交于两点P,Q,若∠PAQ=60°且$\overrightarrow{OQ}$=2$\overrightarrow{OP}$,则双曲线C的离心率为( )
| A. | $\frac{\sqrt{39}}{6}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{7}}{2}$ | D. | $\sqrt{3}$ |
7.已知实数m,n满足logam>logan(a>1),则下列关系式不恒成立的是( )
| A. | |m|>|n| | B. | ($\frac{1}{2}$)m<($\frac{1}{2}$)n | C. | sinm>sinn | D. | m${\;}^{\frac{1}{2}}$>n${\;}^{\frac{1}{2}}$ |
17.直线$\left\{\begin{array}{l}x=tsin20°+3\\ y=-tcos20°\end{array}\right.$(t为参数)的倾斜角为( )
| A. | 20° | B. | 70° | C. | 110° | D. | 160° |
4.将甲、乙等5位同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有( )
| A. | 240种 | B. | 180种 | C. | 150种 | D. | 540种 |