题目内容
15.点P从点A(1,0)出发,沿单位圆x2+y2=1逆时针方向运动$\frac{2π}{3}$弧长到达点Q,则点Q的坐标是( )| A. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | ($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) |
分析 由题意推出∠QOx角的大小,然后求出Q点的坐标.
解答 解:点P从(1,0)出发,沿单位圆逆时针方向运动$\frac{2π}{3}$弧长到达Q点,
所以∠QOx=$\frac{2π}{3}$,
所以Q(cos$\frac{2π}{3}$,sin$\frac{2π}{3}$),
即Q点的坐标为:(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
故选:A.
点评 本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向,属于基础题.
练习册系列答案
相关题目
7.
执行如图所示的程序框图,则输出S的值为( )
| A. | $\frac{3}{4}$ | B. | $\frac{5}{6}$ | C. | $\frac{11}{12}$ | D. | $\frac{25}{24}$ |
4.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞]上单调递增,若实数a满足f(log2a)+f($lo{g}_{\frac{1}{2}}a$)≤2f(1),则a的取值范围是( )
| A. | [1,2] | B. | (0,$\frac{1}{2}$] | C. | (0,2] | D. | [$\frac{1}{2}$,2] |
5.将函数f(x)=sin(2x+$\frac{π}{3}$)图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移$\frac{π}{12}$个单位得到函数g(x)的图象.在g(x)图象的所有对称中心中,离原点最近的对称中心为( )
| A. | (-$\frac{5π}{12}$,0) | B. | ($\frac{π}{4}$,0) | C. | (-$\frac{π}{6}$,0) | D. | ($\frac{π}{12}$,0) |