题目内容
已知数列{an}满足:a1=2,Sn为数列{an}的前n项和,且Sn=nan-(n2-n)
(1)求{an}通项公式.
(2)若数列{an}满足bn+1-bn=2an+3,且b1=3,{
}的前n项和Tn,试证明Tn<
.
(1)求{an}通项公式.
(2)若数列{an}满足bn+1-bn=2an+3,且b1=3,{
| 1 |
| bn |
| 3 |
| 4 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)在数列递推式中取n=n-1得另一递推式,作差后可得{an}为以a1=2为首项,以2为公差的等差数列,代入等差数列的通项公式得答案;
(2)把数列{an}的通项公式代入bn+1-bn=2an+3=4n+3,由叠加法得到数列{bn}的通项公式,进一步得到
=
<
=
-
.
验证n=1,n=2,n=3满足Tn<
;当n≥4时放缩后利用裂项相消法求和后得答案.
(2)把数列{an}的通项公式代入bn+1-bn=2an+3=4n+3,由叠加法得到数列{bn}的通项公式,进一步得到
| 1 |
| bn |
| 1 |
| n(2n+1) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
验证n=1,n=2,n=3满足Tn<
| 3 |
| 4 |
解答:
解:(1)由Sn=nan-(n2-n),得
Sn-1=(n-1)an-1-[(n-1)2-(n-1)](n≥2),
两式相减得:an-an-1=2(n≥2),
∴{an}为以a1=2为首项,以2为公差的等差数列,
∴an=2+2(n-1)=2n;
(2)bn+1-bn=2an+3=4n+3,
叠加bn=b1+(b2-b1)+(b3-b2)+…(bn-bn-1)
=3+7+11+…(4n-1)=
=n(2n+1)(n≥2).
经检验b1=3也符合,∴bn=n(2n+1)
∴
=
<
=
-
.
当n=1时,Tn=
<
;
当n=2时,Tn=
+
=
+
=
<
;
当n=3时,Tn=
+
+
=
<
;
当n≥4时,Tn=
+
+
+…
<
+
+
+
-
+
-
+…+
-
=
-
<
.
综上所述 Tn<
.
Sn-1=(n-1)an-1-[(n-1)2-(n-1)](n≥2),
两式相减得:an-an-1=2(n≥2),
∴{an}为以a1=2为首项,以2为公差的等差数列,
∴an=2+2(n-1)=2n;
(2)bn+1-bn=2an+3=4n+3,
叠加bn=b1+(b2-b1)+(b3-b2)+…(bn-bn-1)
=3+7+11+…(4n-1)=
| n[3+(4n-1)] |
| 2 |
经检验b1=3也符合,∴bn=n(2n+1)
∴
| 1 |
| bn |
| 1 |
| n(2n+1) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
当n=1时,Tn=
| 1 |
| 3 |
| 3 |
| 4 |
当n=2时,Tn=
| 1 |
| 3 |
| 1 |
| 2×5 |
| 1 |
| 3 |
| 1 |
| 10 |
| 13 |
| 30 |
| 3 |
| 4 |
当n=3时,Tn=
| 1 |
| 3 |
| 1 |
| 10 |
| 1 |
| 21 |
| 101 |
| 210 |
| 3 |
| 4 |
当n≥4时,Tn=
| 1 |
| 3 |
| 1 |
| 2×5 |
| 1 |
| 3×7 |
| 1 |
| n(2n+1) |
<
| 1 |
| 3 |
| 1 |
| 10 |
| 1 |
| 21 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 307 |
| 420 |
| 1 |
| n+1 |
| 3 |
| 4 |
综上所述 Tn<
| 3 |
| 4 |
点评:本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,考查了放缩法证明数列不等式,是中高档题.
练习册系列答案
相关题目
下列几何体中不是旋转体的是( )
| A、 |
| B、 |
| C、 |
| D、 |