题目内容

8.在△ABC,三内角 A,B,C的对边分别为a,b,c,已知A=30°,$b=\sqrt{3},a=1$,则c=1或2.

分析 利用余弦定理列出关系式,把A=30°,$b=\sqrt{3},a=1$值代入计算即可求出c的值

解答 解:∵A=30°,$b=\sqrt{3},a=1$,
∴由余弦定理得A2=b2+c2-2bccosB,即1=3+c2-2×$\sqrt{3}$×c×$\frac{\sqrt{3}}{2}$,
即c2-3c+2=0
解得:c=1或c=2;
故答案为:1或2.

点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网