题目内容
16.若对于任意实数x,有x4=a0+a1(x-2)+a2(x-2)2+a3(x-2)3+a4(x-2)4,则a2的值为( )| A. | 4 | B. | 12 | C. | 24 | D. | 48 |
分析 由题意根据 x4=[2+(x-2)]4,利用二项式定理求得a2的值.
解答 解:∵x4=[2+(x-2)]4=${C}_{4}^{0}$•24+${C}_{4}^{1}$•23•(x-2)+${C}_{4}^{2}$•22•(x-2)2+${C}_{4}^{3}$•2•(x-2)3+${C}_{4}^{4}$•(x-2)4
=a0+a1(x-2)+a2(x-2)2+a3(x-2)3+a4(x-2)4,
则a2 =4${C}_{4}^{2}$=24,
故选:C.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.
练习册系列答案
相关题目
4.设函数f(x)=x3+x,若当$0≤θ≤\frac{π}{2}$时,f(msinθ)+f(sinθ-cos2θ+2)>0恒成立,则实数m的取值范围是( )
| A. | (-3,+∞) | B. | (-1,+∞) | C. | (-∞,-3) | D. | (-∞,-1) |
5.
宿州某中学N名教师参加“低碳节能你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
下表是年龄的频数分布表:
(1)求正整数m,p,N的值;
(2)用分层抽样的方法,从第1、3、5组抽取6人,则第1、3、5组各抽取多少人?
(3)在(2)的条件下,从这6人中随机抽取2人参加学校之间的宣传交流活动,求恰有1人在第3组的概率.
下表是年龄的频数分布表:
| 区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
| 人数 | 25 | m | p | 75 | 25 |
(2)用分层抽样的方法,从第1、3、5组抽取6人,则第1、3、5组各抽取多少人?
(3)在(2)的条件下,从这6人中随机抽取2人参加学校之间的宣传交流活动,求恰有1人在第3组的概率.