题目内容
20.若数列{an}满足a1=1,log2an+1=log2an+1(n∈N*),它的前n项和为Sn,则Sn=( )| A. | 2-21-n | B. | 2n-1-1 | C. | 2n-1 | D. | 2-2n-1 |
分析 利用对数的运算法则化简数列的递推关系式,判断数列是等比数列,然后求解前n项和即可.
解答 解:因为log2an+1=log2an+1 (n∈N*),所以an+1=2an,q=2,a1=1,由等比数列的求和公式得Sn=2n-1,
故选C.
点评 本题考查对数的运算法则以及数列的递推关系式的应用,考查计算能力.
练习册系列答案
相关题目
8.
如图所示是沿圆锥的两条母线将圆锥削去一部分后得几何体的三视图,其体积为$\frac{16π}{9}+\frac{2\sqrt{3}}{3}$,则圆锥的母线长为( )
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | $\sqrt{2}+\sqrt{3}$ |
12.设a,b∈R,则“$\frac{{a}^{2}}{a-b}$<0”是“a<b”的( )条件.
| A. | 充分而不必要 | B. | 必要而不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
10.
某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 广告投入x/万元 | 1 | 2 | 3 | 4 | 5 |
| 销售收益y/万元 | 2 | 3 | 2 | 5 | 7 |
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.