题目内容
6.${(x-\frac{1}{4x})^6}$的展开式中常数项为$-\frac{5}{16}$.分析 写出二项展开式的通项,令x的指数为0求得r值,则答案可求.
解答 解:由${T}_{r+1}={C}_{6}^{r}{x}^{6-r}(-\frac{1}{4x})^{r}=(-\frac{1}{4})^{r}{C}_{6}^{r}{x}^{6-2r}$,
取6-2r=0,得r=3.
∴${(x-\frac{1}{4x})^6}$的展开式中常数项为$(-\frac{1}{4})^{3}{C}_{6}^{3}=-\frac{5}{16}$.
故答案为:-$\frac{5}{16}$.
点评 本题考查二项式系数的性质,关键是熟记展开式的通项,是基础题.
练习册系列答案
相关题目
17.(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1=( )
| A. | x5 | B. | (x-1)5-1 | C. | x5+1 | D. | 1 |
14.命题“?x0∈R,f(x0)≥2或f(x0)≤1”的否定形式是( )
| A. | ?x∈R,1<f(x)<2 | B. | ?x0∈R,1<f(x0)<2 | ||
| C. | ?x∈R,f(x)≥2或f(x)≤1 | D. | ?x0∈R,f(x0)≥2或f(x0)>1 |
1.若直线x+my-1=0与不等式组$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+2≤0}\\{x≥-1}\end{array}\right.$,表示的平面区域有公共点,则实数m的取值范围是( )
| A. | [$\frac{1}{2}$,2] | B. | [$\frac{1}{3}$,3] | C. | (-∞,$\frac{1}{3}$]∪[3,+∞) | D. | (-∞,$\frac{1}{2}$]∪[2,+∞) |
11.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,1),则|2$\overrightarrow{a}+\overrightarrow{b}$|=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{13}$ | C. | 5$\sqrt{2}$ | D. | $\sqrt{2}+2\sqrt{13}$ |