ÌâÄ¿ÄÚÈÝ
¸ø¶¨ÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©£¬³ÆÔ²ÐÄÔÚÔµãO¡¢°ë¾¶ÊÇ
µÄԲΪÍÖÔ²CµÄ¡°×¼Ô²¡±£®ÒÑÖªÍÖÔ²CµÄÒ»¸ö½¹µãΪF£¨
£¬0£©£¬Æä¶ÌÖáµÄÒ»¸ö¶Ëµãµ½µãFµÄ¾àÀëΪ
£®
£¨¢ñ£©ÇóÍÖÔ²C¼°Æä¡°×¼Ô²¡±µÄ·½³Ì
£¨¢ò£©ÈôµãAÊÇÍÖÔ²CµÄ¡°×¼Ô²¡±ÓëxÖáÕý°ëÖáµÄ½»µã£¬B£¬DÊÇÍÖÔ²CÉϵÄÏàÒìÁ½µã£¬ÇÒBD¡ÍxÖᣬÇó
•
µÄȡֵ·¶Î§£»
£¨¢ó£©ÔÚÍÖÔ²CµÄ¡°×¼Ô²¡±ÉÏÈÎȡһµãP£¨1£¬
£©£¬¹ýµãP×÷Á½ÌõÖ±Ïßl1£¬l2£¬Ê¹µÃl1£¬l2ÓëÍÖÔ²C¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÇÒl1£¬l2·Ö±ðÓëÍÖÔ²µÄ¡°×¼Ô²¡±½»ÓÚM£¬NÁ½µã£®Ö¤Ã÷£ºÖ±ÏßMN¹ýÔµãO£®
| x2 |
| a2 |
| y2 |
| b2 |
| a2+b2 |
| 2 |
| 3 |
£¨¢ñ£©ÇóÍÖÔ²C¼°Æä¡°×¼Ô²¡±µÄ·½³Ì
£¨¢ò£©ÈôµãAÊÇÍÖÔ²CµÄ¡°×¼Ô²¡±ÓëxÖáÕý°ëÖáµÄ½»µã£¬B£¬DÊÇÍÖÔ²CÉϵÄÏàÒìÁ½µã£¬ÇÒBD¡ÍxÖᣬÇó
| AB |
| AD |
£¨¢ó£©ÔÚÍÖÔ²CµÄ¡°×¼Ô²¡±ÉÏÈÎȡһµãP£¨1£¬
| 3 |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨¢ñ£©ÓÉÌâÒâÖªc=
£¬a=
=
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³ÌºÍÆä¡°×¼Ô²¡±£®
£¨¢ò£©ÓÉÌâÒ⣬ÉèB£¨m£¬n£©£¬D£¨m£¬-n£©£¬£¨-
£¼m£¼
£¬ÔòÓÐ
+n2=1£¬ÓÖAµã×ø±êΪ£¨2£¬0£©£¬¹Ê
=(m-2£¬n)£¬
=(m-2£¬-n)£¬ÓÉ´ËÄÜÇó³ö
•
µÄȡֵ·¶Î§£®
£¨¢ó£©ÓÉÒÑÖªÌõ¼þÖ¤Ã÷l1¡Íl2£¬Óɴ˵õ½MNÊÇ×¼Ô²µÄÖ±¾¶£¬´Ó¶øÄÜÖ¤Ã÷Ö±ÏßMN¹ýÔµãO£®
| 2 |
| b2+c2 |
| 3 |
£¨¢ò£©ÓÉÌâÒ⣬ÉèB£¨m£¬n£©£¬D£¨m£¬-n£©£¬£¨-
| 3 |
| 3 |
| m2 |
| 3 |
| AB |
| AD |
| AB |
| AD |
£¨¢ó£©ÓÉÒÑÖªÌõ¼þÖ¤Ã÷l1¡Íl2£¬Óɴ˵õ½MNÊÇ×¼Ô²µÄÖ±¾¶£¬´Ó¶øÄÜÖ¤Ã÷Ö±ÏßMN¹ýÔµãO£®
½â´ð£º
£¨¢ñ£©½â£ºÓÉÌâÒâÖªc=
£¬a=
=
£¬½âµÃb=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
+y2=1£¬Æä¡°×¼Ô²¡±Îªx2+y2=4£®
£¨¢ò£©½â£ºÓÉÌâÒ⣬ÉèB£¨m£¬n£©£¬D£¨m£¬-n£©£¬£¨-
£¼m£¼
£¬ÔòÓÐ
+n2=1£¬
ÓÖAµã×ø±êΪ£¨2£¬0£©£¬¹Ê
=(m-2£¬n)£¬
=(m-2£¬-n)£¬
¡à
•
=(m-2)2-n2=m2-4m+4-(1-
)
=
m2-4m+3=
(m-
)2£¬
ÓÖ-
£¼m£¼
£¬¡à
(m-
)2¡Ê[0£¬7+4
£©£®
¡à
•
µÄȡֵ·¶Î§ÊÇ[0£¬7+4
£©£®
£¨¢ó£©ÉèP£¨s£¬t£©£¬Ôòs2+t2=4£¬
µ±s=¡À
ʱ£¬t=¡À1£¬Ôòl1£¬l2ÆäÖÐ֮һбÂʲ»´æÔÚ£¬ÁíÒ»ÌõбÂÊΪ0£¬
¡àl1¡Íl2£®
µ±t¡Ù¡À
ʱ£¬Éè¹ýP£¨s£¬t£©ÇÒÓëÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏßlµÄбÂÊΪk£¬
ÔòlµÄ·½³ÌΪy-t=k£¨x-s£©£¬´úÈëÍÖÔ²CµÄ·½³Ì£¬µÃ£º
x2+3[k£¨x-s£©+t]2=3£¬¼´£¨3k2+1£©x2-6k£¨t-ks£©x+3£¨t-kt£©2-3=0£¬
ÓÉ¡÷=36k2£¨t-ks£©2-4£¨3k2+1£©[3£¨t-kt£©2-3]=0£¬
µÃ£¨3-t2£©k2+2stk+t2-3=0£¬ÆäÖÐ3-t2¡Ù0£¬
Éèl1£¬l2µÄбÂÊ·Ö±ðΪk1£¬k2£¬Ôòk1£¬k2·Ö±ðÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
¡àk1k2=-1£¬¡àl1¡Íl2£®
×ÛÉÏËùÊö£¬l1¡Íl2£¬
¡àMNÊÇ×¼Ô²µÄÖ±¾¶£¬¡àÖ±ÏßMN¹ýÔµãO£®
| 2 |
| b2+c2 |
| 3 |
¡àÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 3 |
£¨¢ò£©½â£ºÓÉÌâÒ⣬ÉèB£¨m£¬n£©£¬D£¨m£¬-n£©£¬£¨-
| 3 |
| 3 |
| m2 |
| 3 |
ÓÖAµã×ø±êΪ£¨2£¬0£©£¬¹Ê
| AB |
| AD |
¡à
| AB |
| AD |
| m2 |
| 3 |
=
| 4 |
| 3 |
| 4 |
| 3 |
| 3 |
| 2 |
ÓÖ-
| 3 |
| 3 |
| 4 |
| 3 |
| 3 |
| 2 |
| 3 |
¡à
| AB |
| AD |
| 3 |
£¨¢ó£©ÉèP£¨s£¬t£©£¬Ôòs2+t2=4£¬
µ±s=¡À
| 3 |
¡àl1¡Íl2£®
µ±t¡Ù¡À
| 3 |
ÔòlµÄ·½³ÌΪy-t=k£¨x-s£©£¬´úÈëÍÖÔ²CµÄ·½³Ì£¬µÃ£º
x2+3[k£¨x-s£©+t]2=3£¬¼´£¨3k2+1£©x2-6k£¨t-ks£©x+3£¨t-kt£©2-3=0£¬
ÓÉ¡÷=36k2£¨t-ks£©2-4£¨3k2+1£©[3£¨t-kt£©2-3]=0£¬
µÃ£¨3-t2£©k2+2stk+t2-3=0£¬ÆäÖÐ3-t2¡Ù0£¬
Éèl1£¬l2µÄбÂÊ·Ö±ðΪk1£¬k2£¬Ôòk1£¬k2·Ö±ðÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
¡àk1k2=-1£¬¡àl1¡Íl2£®
×ÛÉÏËùÊö£¬l1¡Íl2£¬
¡àMNÊÇ×¼Ô²µÄÖ±¾¶£¬¡àÖ±ÏßMN¹ýÔµãO£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣬ͻ³ö¿¼²éÁËÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛ¡¢º¯ÊýÓë·½³Ì¡¢µÈ¼Ûת»¯µÈÊýѧ˼Ïë·½·¨£¬ÒªÇó¿¼Éú·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦¡¢¼ÆËãÄÜÁ¦½Ï¸ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÏòÁ¿
¡¢
£¬
•
=-40£¬|
|=10£¬|
|=8£¬ÔòÏòÁ¿
Óë
µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| A¡¢60¡ã | B¡¢-60¡ã |
| C¡¢120¡ã | D¡¢-120¡ã |