题目内容
6.在极坐标系中,圆ρ=2cosθ的圆心的极坐标是( )| A. | (1,$\frac{π}{2}$) | B. | (1,-$\frac{π}{2}$) | C. | (1,π) | D. | (1,0) |
分析 先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,将极坐标方程转化为直角坐标方程,求出坐标即可.
解答 解:圆ρ=2cosθ的直角坐标方程为:x2+y2-2x=0,其圆心(1,0),
点(1,0)的极坐标为(1,0),
故选:D.
点评 本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.属于基础题.
练习册系列答案
相关题目
20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则( )
| A. | z的最小值为3,z无最大值 | B. | z的最小值为1,最大值为3 | ||
| C. | z的最小值为1,z无最大值 | D. | z的最大值为3,z无最小值 |
17.已知方程a-x2=-2lnx在区间[$\frac{1}{e}$,e]上有解(其中e为自然对数的底数),则实数a的取值范围是( )
| A. | [1,$\frac{1}{{e}^{2}}$+2] | B. | [1,e2-2] | C. | [$\frac{1}{{e}^{2}}$+2,e2-2] | D. | [e2-2,+∞) |
14.已知函数f(x)=$\left\{\begin{array}{l}{\frac{lnx}{x},x≥1}\\{-{x}^{3}+1,x<1}\end{array}\right.$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是( )
| A. | (0,$\frac{1}{e}$) | B. | (-∞,0] | C. | (-∞,$\frac{1}{e}$) | D. | [$\frac{1}{e}$,+∞) |
11.设i是虚数单位,若$\frac{z}{1-i}$=2+i,则复数z的共轭复数是( )
| A. | 1+i | B. | 2+i | C. | 3-i | D. | 3+i |
18.若a<b<0,则下列不等式中错误的是( )
| A. | $\frac{1}{a}$>$\frac{1}{b}$ | B. | $\frac{1}{a-b}$>$\frac{1}{b}$ | C. | |a|>|b| | D. | a2>ab |